Associated primes of local cohomology modules
HTML articles powered by AMS MathViewer
- by Kamran Divaani-Aazar and Amir Mafi
- Proc. Amer. Math. Soc. 133 (2005), 655-660
- DOI: https://doi.org/10.1090/S0002-9939-04-07728-7
- Published electronically: October 7, 2004
- PDF | Request permission
Abstract:
Let $\mathfrak {a}$ be an ideal of a commutative Noetherian ring $R$ and $M$ a finitely generated $R$-module. Let $t$ be a natural integer. It is shown that there is a finite subset $X$ of $\operatorname {Spec}R$, such that $\operatorname {Ass}_R(H_{\mathfrak {a}}^t(M))$ is contained in $X$ union with the union of the sets $\operatorname {Ass}_R(\operatorname {Ext} _R^j(R/\mathfrak {a},H_{\mathfrak {a}}^i(M)))$, where $0\leq i<t$ and $0\leq j\leq t^2+1$. As an immediate consequence, we deduce that the first non-$\mathfrak {a}$-cofinite local cohomology module of $M$ with respect to $\mathfrak {a}$ has only finitely many associated prime ideals.References
- Richard G. Belshoff, Edgar E. Enochs, and Juan Ramon García Rozas, Generalized Matlis duality, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1307–1312. MR 1641645, DOI 10.1090/S0002-9939-99-05130-8
- M. P. Brodmann and A. Lashgari Faghani, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc. 128 (2000), no. 10, 2851–2853. MR 1664309, DOI 10.1090/S0002-9939-00-05328-4
- M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR 1613627, DOI 10.1017/CBO9780511629204
- Edgar Enochs, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (1984), no. 2, 179–184. MR 754698, DOI 10.1090/S0002-9939-1984-0754698-X
- Carl Faith and Dolors Herbera, Endomorphism rings and tensor products of linearly compact modules, Comm. Algebra 25 (1997), no. 4, 1215–1255. MR 1437670, DOI 10.1080/00927879708825918
- Robin Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1969/70), 145–164. MR 257096, DOI 10.1007/BF01404554
- Craig Huneke, Problems on local cohomology, Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990) Res. Notes Math., vol. 2, Jones and Bartlett, Boston, MA, 1992, pp. 93–108. MR 1165320
- Ken-Ichiroh Kawasaki, Cofiniteness of local cohomology modules for principal ideals, Bull. London Math. Soc. 30 (1998), no. 3, 241–246. MR 1608094, DOI 10.1112/S0024609397004347
- K. Khashyarmanesh and Sh. Salarian, On the associated primes of local cohomology modules, Comm. Algebra 27 (1999), no. 12, 6191–6198. MR 1726302, DOI 10.1080/00927879908826816
- Gennady Lyubeznik, A partial survey of local cohomology, Local cohomology and its applications (Guanajuato, 1999) Lecture Notes in Pure and Appl. Math., vol. 226, Dekker, New York, 2002, pp. 121–154. MR 1888197
- Joseph J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, vol. 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 538169
- Anurag K. Singh, $p$-torsion elements in local cohomology modules, Math. Res. Lett. 7 (2000), no. 2-3, 165–176. MR 1764314, DOI 10.4310/MRL.2000.v7.n2.a3
- Weimin Xue, Rings with Morita duality, Lecture Notes in Mathematics, vol. 1523, Springer-Verlag, Berlin, 1992. MR 1184837, DOI 10.1007/BFb0089071
- Ken-Ichi Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179–191. MR 1475172, DOI 10.1017/S0027763000006371
Bibliographic Information
- Kamran Divaani-Aazar
- Affiliation: Department of Mathematics, Az-Zahra University, Vanak, Post Code 19834, Tehran, Iran — and — Institute for Studies in Theoretical Physics and Mathematics, P. O. Box 19395-5746, Tehran, Iran
- Email: kdivaani@ipm.ir
- Amir Mafi
- Affiliation: Institute of Mathematics, University for Teacher Education, 599 Taleghani Avenue, Tehran 15614, Iran
- Received by editor(s): October 16, 2003
- Published electronically: October 7, 2004
- Communicated by: Bernd Ulrich
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 655-660
- MSC (2000): Primary 13D45, 13E99
- DOI: https://doi.org/10.1090/S0002-9939-04-07728-7
- MathSciNet review: 2113911