On the evaluation of Salié sums
HTML articles powered by AMS MathViewer
- by Árpád Tóth
- Proc. Amer. Math. Soc. 133 (2005), 643-645
- DOI: https://doi.org/10.1090/S0002-9939-04-07768-8
- Published electronically: October 7, 2004
- PDF | Request permission
Abstract:
The Salié sum $S(m,n;c)$ can be evaluated as the product of a Gauss sum and an exponential sum involving square roots of $mn \bmod {c}$. We give a new proof of this fact that can simultaneously handle a twisted version of these sums that arise in the theory of half-integral weight modular forms.References
- W. Duke, On multiple Salié sums, Proc. Amer. Math. Soc. 114 (1992), no. 3, 623–625. MR 1077785, DOI 10.1090/S0002-9939-1992-1077785-2
- Henryk Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87 (1987), no. 2, 385–401. MR 870736, DOI 10.1007/BF01389423
- Salié, Hans. Über die Kloostermanschen Summen $S(u,v;q)$. (German) Math. Z. 34, 91-109, (1931).
- Peter Sarnak, Some applications of modular forms, Cambridge Tracts in Mathematics, vol. 99, Cambridge University Press, Cambridge, 1990. MR 1102679, DOI 10.1017/CBO9780511895593
- Goro Shimura, On modular forms of half integral weight, Ann. of Math. (2) 97 (1973), 440–481. MR 332663, DOI 10.2307/1970831
- Kenneth S. Williams, Note on Salié’s sum, Proc. Amer. Math. Soc. 30 (1971), 393–394. MR 284408, DOI 10.1090/S0002-9939-1971-0284408-5
Bibliographic Information
- Árpád Tóth
- Affiliation: Departament of Analysis, Eötvös Lórand University, Pázmány Péter Sétány 1/c, H-1117 Budapest, Hungary
- Email: toth@cs.elte.hu
- Received by editor(s): October 6, 2003
- Published electronically: October 7, 2004
- Communicated by: David E. Rohrlich
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 643-645
- MSC (2000): Primary 11L05; Secondary 11F37
- DOI: https://doi.org/10.1090/S0002-9939-04-07768-8
- MathSciNet review: 2113909