A big Picard theorem for quasiregular mappings into manifolds with many ends
HTML articles powered by AMS MathViewer
- by Ilkka Holopainen and Pekka Pankka
- Proc. Amer. Math. Soc. 133 (2005), 1143-1150
- DOI: https://doi.org/10.1090/S0002-9939-04-07599-9
- Published electronically: October 14, 2004
- PDF | Request permission
Abstract:
We study quasiregular mappings from a punctured Euclidean ball into $n$-manifolds with many ends and prove, by using Harnack’s inequality, a version of the big Picard theorem.References
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743
- Alexandre Eremenko and John L. Lewis, Uniform limits of certain $A$-harmonic functions with applications to quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 2, 361–375. MR 1139803, DOI 10.5186/aasfm.1991.1609
- Tadeusz Iwaniec and Gaven Martin, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001. MR 1859913
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1207810
- Ilkka Holopainen and Seppo Rickman, A Picard type theorem for quasiregular mappings of $\textbf {R}^n$ into $n$-manifolds with many ends, Rev. Mat. Iberoamericana 8 (1992), no. 2, 131–148. MR 1191342, DOI 10.4171/RMI/120
- Ilkka Holopainen and Seppo Rickman, Quasiregular mappings of the Heisenberg group, Math. Ann. 294 (1992), no. 4, 625–643. MR 1190448, DOI 10.1007/BF01934345
- Ilkka Holopainen and Seppo Rickman, Ricci curvature, Harnack functions, and Picard type theorems for quasiregular mappings, Analysis and topology, World Sci. Publ., River Edge, NJ, 1998, pp. 315–326. MR 1667818
- John L. Lewis, Picard’s theorem and Rickman’s theorem by way of Harnack’s inequality, Proc. Amer. Math. Soc. 122 (1994), no. 1, 199–206. MR 1195483, DOI 10.1090/S0002-9939-1994-1195483-3
- Seppo Rickman, On the number of omitted values of entire quasiregular mappings, J. Analyse Math. 37 (1980), 100–117. MR 583633, DOI 10.1007/BF02797681
- Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941, DOI 10.1007/978-3-642-78201-5
Bibliographic Information
- Ilkka Holopainen
- Affiliation: Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), FIN-00014, University of Helsinki, Finland
- MR Author ID: 290418
- Email: ilkka.holopainen@helsinki.fi
- Pekka Pankka
- Affiliation: Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), FIN-00014, University of Helsinki, Finland
- Email: pekka.pankka@helsinki.fi
- Received by editor(s): August 26, 2003
- Received by editor(s) in revised form: December 2, 2003
- Published electronically: October 14, 2004
- Additional Notes: Both authors were supported in part by the Academy of Finland, project 53292.
- Communicated by: Juha M. Heinonen
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 1143-1150
- MSC (2000): Primary 30C65
- DOI: https://doi.org/10.1090/S0002-9939-04-07599-9
- MathSciNet review: 2117216