## A big Picard theorem for quasiregular mappings into manifolds with many ends

HTML articles powered by AMS MathViewer

- by Ilkka Holopainen and Pekka Pankka PDF
- Proc. Amer. Math. Soc.
**133**(2005), 1143-1150 Request permission

## Abstract:

We study quasiregular mappings from a punctured Euclidean ball into $n$-manifolds with many ends and prove, by using Harnack’s inequality, a version of the big Picard theorem.## References

- Lars V. Ahlfors,
*Conformal invariants: topics in geometric function theory*, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR**0357743** - Alexandre Eremenko and John L. Lewis,
*Uniform limits of certain $A$-harmonic functions with applications to quasiregular mappings*, Ann. Acad. Sci. Fenn. Ser. A I Math.**16**(1991), no. 2, 361–375. MR**1139803**, DOI 10.5186/aasfm.1991.1609 - Tadeusz Iwaniec and Gaven Martin,
*Geometric function theory and non-linear analysis*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001. MR**1859913** - Juha Heinonen, Tero Kilpeläinen, and Olli Martio,
*Nonlinear potential theory of degenerate elliptic equations*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR**1207810** - Ilkka Holopainen and Seppo Rickman,
*A Picard type theorem for quasiregular mappings of $\textbf {R}^n$ into $n$-manifolds with many ends*, Rev. Mat. Iberoamericana**8**(1992), no. 2, 131–148. MR**1191342**, DOI 10.4171/RMI/120 - Ilkka Holopainen and Seppo Rickman,
*Quasiregular mappings of the Heisenberg group*, Math. Ann.**294**(1992), no. 4, 625–643. MR**1190448**, DOI 10.1007/BF01934345 - Ilkka Holopainen and Seppo Rickman,
*Ricci curvature, Harnack functions, and Picard type theorems for quasiregular mappings*, Analysis and topology, World Sci. Publ., River Edge, NJ, 1998, pp. 315–326. MR**1667818** - John L. Lewis,
*Picard’s theorem and Rickman’s theorem by way of Harnack’s inequality*, Proc. Amer. Math. Soc.**122**(1994), no. 1, 199–206. MR**1195483**, DOI 10.1090/S0002-9939-1994-1195483-3 - Seppo Rickman,
*On the number of omitted values of entire quasiregular mappings*, J. Analyse Math.**37**(1980), 100–117. MR**583633**, DOI 10.1007/BF02797681 - Seppo Rickman,
*Quasiregular mappings*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR**1238941**, DOI 10.1007/978-3-642-78201-5

## Additional Information

**Ilkka Holopainen**- Affiliation: Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), FIN-00014, University of Helsinki, Finland
- MR Author ID: 290418
- Email: ilkka.holopainen@helsinki.fi
**Pekka Pankka**- Affiliation: Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), FIN-00014, University of Helsinki, Finland
- Email: pekka.pankka@helsinki.fi
- Received by editor(s): August 26, 2003
- Received by editor(s) in revised form: December 2, 2003
- Published electronically: October 14, 2004
- Additional Notes: Both authors were supported in part by the Academy of Finland, project 53292.
- Communicated by: Juha M. Heinonen
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**133**(2005), 1143-1150 - MSC (2000): Primary 30C65
- DOI: https://doi.org/10.1090/S0002-9939-04-07599-9
- MathSciNet review: 2117216