"BEURLING TYPE" SUBSPACES OF $L^p(T^2)$ AND $H^p(T^2)$

D. A. REDETT

(Communicated by Joseph A. Ball)

Abstract. In this note we extend the “Beurling type” characterizations of subspaces of $L^2(T^2)$ and $H^2(T^2)$ to $L^p(T^2)$ and $H^p(T^2)$, respectively.

1. Introduction

In [1], Beurling characterized all of the subspaces (closed linear manifolds) of $H^2(T)$ invariant under multiplication by the coordinate function. Later, Helson and Lowdenslager proved a “Beurling type” result for $L^2(T)$; see [3]. The above mentioned results have been extended to $H^p(T)$ and $L^p(T)$, respectively (see [3]). There is still no characterization of all of the subspace of $H^2(T^2)$ invariant under multiplication by each of the coordinate functions. In the direction of finding descriptions of all of the subspaces of $H^2(T^2)$ invariant under multiplication by each of the coordinate functions, Mandrekar [4] found necessary and sufficient conditions for a subspace of $H^2(T^2)$ invariant under multiplication by each of the coordinate functions to be of “Beurling type”. Later, Ghatage and Mandrekar [2] proved a “Beurling type” result in $L^2(T^2)$. In this note, we extend Ghatage and Mandrekar’s “Beurling type” result to $L^p(T^2)$. As a corollary, we get an $H^p(T^2)$ result. We follow the procedure given for the one variable case found in [3]. We point out later in this note where the procedure breaks down and how we can fix it.

2. Notation and terminology

We let C^2 denote the cartesian product of two copies of C. The unit bidisc in C^2 is denoted by U^2 and the distinguished boundary by T^2, where U and T are the unit disc and unit circle in the complex plane, respectively.

The Hardy space $H^p(U^2)$ ($1 \leq p < \infty$) is the Banach space of holomorphic functions over U^2 that satisfy the inequality

$$\sup_{0 \leq r < 1} \int_{T^2} |f(r\xi_1, r\xi_2)|^p \, dm_2(\xi_1, \xi_2) < \infty$$

where m_2 denotes normalized Lebesgue measure on T^2. Note, holomorphic here means holomorphic in each variable. The norm $\|f\|_p$ of a function f in $H^p(U^2)$ is defined by

$$\|f\|_p = \sup_{0 \leq r < 1} \left(\int_{T^2} |f(r\xi_1, r\xi_2)|^p \, dm_2(\xi_1, \xi_2) \right)^{1/p}.$$
The Hardy space $H^\infty(U^2)$ is the Banach space of holomorphic functions over U^2 that satisfy the inequality

$$\sup_{(z_1, z_2) \in U^2} |f(z_1, z_2)| < \infty.$$

The norm $\|f\|_\infty$ of a function f in $H^\infty(U^2)$ is defined by

$$\|f\|_\infty = \sup_{(z_1, z_2) \in U^2} |f(z_1, z_2)|.$$

It is well known (see [6]) that every function in $H^p(U^2)$ ($1 \leq p \leq \infty$) has a nontangential limit at $[m_2]$ almost every point of T^2. Let f^* denote the boundary function of an f in $H^p(U^2)$. Then

$$f^* \in H^p(T^2) \equiv \frac{\text{span}_{L^p(T^2,m_2)}}{\ell_{n,m} : n,m \geq 0}.$$

It is also known (see [6]) that f can be reconstructed by the Poisson integral as well as the Cauchy integral of f^*. Furthermore,\[\|f\|_p = \|f^*\|_p \]
where the second norm is the $L^p(T^2,m_2)$ norm. For this reason, we identify $H^p(U^2)$ and $H^p(T^2)$ and no longer distinguish between f and f^*. Therefore, these Banach spaces of holomorphic functions $H^p(U^2)$ may be viewed as a subspace of $L^p(T^2,m_2)$.

For f in $L^p(T^2) = L^p(T^2,m_2)$, S_1 and S_2 will denote the operators of multiplication by the first and second coordinate functions, respectively. That is,

$$S_1(f)(z_1, z_2) = z_1 f(z_1, z_2)$$

and

$$S_2(f)(z_1, z_2) = z_2 f(z_1, z_2).$$

3. MAIN RESULTS

We start this section by giving the aforementioned theorem of Ghatage and Mandrekar and a corollary which was previously proved by Mandrekar alone.

Theorem 1 (Ghatage & Mandrekar [2]). Let $\mathcal{M} \neq \{0\}$ be a subspace of $L^2(T^2)$ invariant under S_1 and S_2. Then, $\mathcal{M} = qH^2(T^2)$ with q unimodular if and only if S_1 and S_2 are doubly commuting shifts on \mathcal{M}.

Here, S_1 **doubly commuting** with S_2 means S_1 commutes with S_2 and S_1 commutes with S_2^* (S_1 commuting with S_2^* is equivalent to S_1^* commuting with S_2). We say S_1 and S_2 act as **shifts** on \mathcal{M} if $\bigcap_{n=0}^\infty S_k^n(\mathcal{M}) = \{0\}$ for $k = 1, 2$.

Corollary 1 (Mandrekar [4]). Let $\mathcal{M} \neq \{0\}$ be a subspace of $H^2(T^2)$ invariant under S_1 and S_2. Then, $\mathcal{M} = qH^2(T^2)$ with q inner if and only if S_1 and S_2 are doubly commuting on \mathcal{M}.

In this note, we prove the following two results.

Theorem 2. Let $\mathcal{M} \neq \{0\}$ be a subspace of $L^p(T^2)$, $1 \leq p < 2$, invariant under S_1 and S_2. Then $\mathcal{M} = qH^p(T^2)$ where q is a unimodular function if and only if S_1 and S_2 are doubly commuting shifts on $\mathcal{M} \cap L^2(T^2)$.

1 star-closed when $p = \infty$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We use the notation $H^p_0(T^2) = \left\{ f \in H^p(T^2) : \hat{f}(0,0) = 0 \right\}$ in the next theorem.

Theorem 3. Let $\mathcal{M} \neq \{0\}$ be a subspace\(^2\) of $L^p(T^2)$, $2 < p \leq \infty$, invariant under S_1 and S_2. Then $\mathcal{M} = qH^p_0(T^2)$ where q is a unimodular function if and only if S_1 and S_2 are doubly commuting shifts on $A(\mathcal{M}) \cap L^2(T^2)$.

Here, $A(\mathcal{M})$ means the annihilator of \mathcal{M}. That is, $A(\mathcal{M}) = \{ f \in \overline{L^\infty(T^2)} : \int_{T^2} fg \, dm = 0, \forall g \in \mathcal{M} \}$.

We then get the following two corollaries, which follow directly from these two theorems.

Corollary 2. Let $\mathcal{M} \neq \{0\}$ be a subspace of $H^p(T^2)$, $1 \leq p < 2$, invariant under S_1 and S_2. Then $\mathcal{M} = qH^p_0(T^2)$ where q is an inner function if and only if S_1 and S_2 are doubly commuting on $\mathcal{M} \cap H^2(T^2)$.

Corollary 3. Let $\mathcal{M} \neq \{0\}$ be a subspace\(^3\) of $H^p(T^2)$, $2 < p \leq \infty$, invariant under S_1 and S_2. Then $\mathcal{M} = qH^p_0(T^2)$ where q is an inner function if and only if S_1 and S_2 are doubly commuting shifts on $A(\mathcal{M}) \cap L^2(T^2)$.

4. WHERE THE ONE-_VARIABLE PROOF BREAKS DOWN

If we just try to follow the one-variable proof given in [3], we run into the following problem. The author uses the fact that a real-valued harmonic function in the unit disc is always the real part of a holomorphic function in the unit disc. This is not always the case in the polydisc. There are simple examples given in [6] that show that not every real-valued harmonic function in the polydisc is the real part of a holomorphic function in the polydisc. Our aim in this section is to overcome this problem.

We let $RP(U^2)$ denote the class of all functions in U^2 that are the real parts of holomorphic functions.

Theorem 4 (Rudin [6]). Suppose f is a lower semicontinuous (l.s.c.) positive function on T^2 and $f \in L^1(T^2)$. Then there exists a singular (complex Borel) measure σ on T^2, $\sigma \geq 0$, such that $P[f - d\sigma] \in RP(U^2)$.

In the above theorem, $P[f - d\sigma]$ stands for the Poisson Integral of $f - d\sigma$.

To prove our main results, we need a variation of this theorem, which proves to be a corollary.

Corollary 4. Suppose f is real-valued on T^2 and $f \in L^1(T^2)$. Then there exists a singular (complex Borel) measure σ on T^2, such that $P[f - d\sigma] \in RP(U^2)$.

We use the following lemma to prove this corollary.

Lemma 1. Suppose f is real-valued on T^2 and $f \in L^p(T^2)$ for $1 \leq p < \infty$. Then there exist two positive l.s.c. functions g_1 and g_2 in $L^p(T^2)$ such that $f = g_1 - g_2$ a.e. on T^2.

We only need this lemma for the case $p = 1$, but it is no more difficult to prove it for $1 \leq p < \infty$.

\(^2\)Assume further star-closed when $p = \infty$.

\(^3\)Assume further star-closed when $p = \infty$.
Proof. Since f is real-valued on \mathbf{T}^2, $f \in L^p(\mathbf{T}^2)$ and continuous functions are dense in $L^p(\mathbf{T}^2)$ there exists ϕ_1 continuous such that
\[\|f - \phi_1\|_p < 2^{-1}, \]
and by the reverse triangle inequality we get
\[\|\phi_1\|_p < \left(1 + 2\|f\|_p\right) \cdot 2^{-1}. \]
Now we can find ϕ_2 continuous such that
\[\left\| (f - \phi_1) - \phi_2 \right\|_p < 2^{-2}, \]
and by the reverse triangle inequality we get
\[\|\phi_2\|_p < 2^{-2} + \|f - \phi_1\|_p < 3 \cdot 2^{-2}. \]
Continuing in this manner we get the existence of a sequence of real-valued continuous functions $(\phi_n)_n$ such that
\[f = \sum_{n=1}^{\infty} \phi_n \]
in $L^p(\mathbf{T}^2)$ and
\[\|\phi_n\|_p < C \cdot 2^{-n} \quad \text{for all } n, \text{ where } C = \max\left\{1 + 2\|f\|_p, 3\right\}. \]
Now, for $\epsilon > 0$, define
\[\psi^+_n = (\phi_n \lor 0) + \epsilon \cdot 2^{-n} \]
and
\[\psi^-_n = (-\phi_n \lor 0) + \epsilon \cdot 2^{-n}. \]
Then ψ^+_n and ψ^-_n are positive continuous functions with $\phi_n = \psi^+_n - \psi^-_n$. So
\[f = \sum_{n=1}^{\infty} (\psi^+_n - \psi^-_n) = \sum_{n=1}^{\infty} \psi^+_n - \sum_{n=1}^{\infty} \psi^-_n \quad \text{in } L^p(\mathbf{T}^2). \]
Since
\[\sum_{n=1}^{\infty} \|\psi^+_n\|_p \leq \sum_{n=1}^{\infty} (\|\phi_n \lor 0\|_p + \epsilon \cdot 2^{-n}) \leq \sum_{n=1}^{\infty} (\|\phi_n\|_p + \epsilon \cdot 2^{-n}) \]
\[< \sum_{n=1}^{\infty} (C \cdot 2^{-n} + \epsilon \cdot 2^{-n}) < \infty, \]
we get that there exists a g_1 in $L^p(\mathbf{T}^2)$ such that
\[g_1 = \sum_{n=1}^{\infty} \psi^+_n \quad \text{in } L^p(\mathbf{T}^2). \]
Similarly, we get that there exists a g_2 in $L^p(\mathbf{T}^2)$ such that
\[g_2 = \sum_{n=1}^{\infty} \psi^-_n \quad \text{in } L^p(\mathbf{T}^2). \]
So we have that
\[f = g_1 - g_2 \quad \text{in } L^p(\mathbf{T}^2). \]
Proof. If L is real-valued on $L^p(T^2)$, there exists a subsequence that converges to g_1 a.e. But since s_n is monotone increasing, we get that s_n converges to g_1 a.e. and further that sup $s_n = \lim s_n$. We conclude that sup s_n is l.s.c. since the sup of a sequence of continuous functions is l.s.c. It is clear that sup s_n is positive. Therefore, g_1 is equal to a positive l.s.c. function a.e. Similarly, we get that g_2 is equal to a positive l.s.c. function a.e. So f is equal a.e. to the difference of two positive l.s.c. functions.

We now prove Corollary 4.

Proof. If f is real-valued on T^2 and $f \in L^1(T^2)$, then Lemma 4 asserts the existence of two positive l.s.c. functions g_1 and g_2 in $L^1(T^2)$ such that $f = g_1 - g_2$ a.e. By Theorem 4 there exist nonnegative singular measures σ_1 and σ_2 such that $P[g_1 - d\sigma_1]$ and $P[g_2 - d\sigma_2]$ are in $RP(U^2)$. Letting $\sigma = \sigma_1 - \sigma_2$ we get a singular measure such that
\[
P(f - d\sigma) = P[(g_1 - g_2) - d(\sigma_1 - \sigma_2)] = P[(g_1 - d\sigma_1) - (g_2 - d\sigma_2)] = P[g_1 - d\sigma_1] - P[g_2 - d\sigma_2].
\]
So, $P(f - d\sigma)$ is in $RP(U^2)$. □

5. PROOF OF MAIN RESULTS

We now prove Theorem 2.

Proof. Let N denote $\mathcal{M} \cap L^2(T^2)$. Then N is a (closed) invariant subspace of $L^2(T^2)$ and by hypothesis S_1 and S_2 are doubly commuting shifts on N. Therefore, by Theorem 1 $N = qH^2(T^2)$ where q is a unimodular function. Now since N is contained in \mathcal{M} and \mathcal{M} is closed, the closure of N in $L^p(T^2)$, which is $qH^p(T^2)$, is contained in \mathcal{M}. So we need to show that N is dense in \mathcal{M}. To do this, let $f \in \mathcal{M}$, f not identically zero. Then define
\[
u_n = \begin{cases} 0, & |f| \leq n, \\ \log |f|^{-1}, & |f| > n. \end{cases}
\]
Note that $\nu_n \in L^p(T^2)$ for all n since
\[
\int |\nu_n|^p \, dm = \int_{|f| > n} |\log |f|^{-1}|^p \, dm = \int_{|f| > n} |\log |f||^p \, dm \\
\leq \int_{|f| > n} |f|^p \, dm \leq \|f\|^p < \infty.
\]
So in particular, $\nu_n \in L^1(T^2)$ and is real valued for all n. So by Corollary 4 there exists a sequence $\{\sigma_n\}_{n \geq 0}$ of singular measures such that $P[\nu_n - d\sigma_n] \in RP(U^2)$ for all n. So there exists a sequence of analytic functions $(F_n)_n$ such that $Re(F_n) = P[\nu_n - d\sigma_n]$. By the M. Riesz theorem, which holds on the polydisc (see [3]), we have $\|F_n\|_p \leq C_p \|\nu_n\|_p$ for all n. Now since $\nu_n \in L^p(T^2)$ and ν_n converges to 0 in...
$L^p(T^2)$, we get that F_n converges to 0 in $L^p(T^2)$, and hence at least a subsequence converges to zero a.e. Let $\phi_n = \exp\{F_n\}$. Then

$$|\phi_n| = \begin{cases} 1, & |f| \leq n, \\ |f|^{-1}, & |f| > n, \end{cases}$$

and ϕ_n tends to the constant function 1. By construction, $\phi_n f$ is a bounded function dominated by f for all n. Also, $\phi_n f \in M$ because ϕ_n is bounded analytic and hence is boundedly the limit of analytic trigonometric polynomials. Since $\phi_n f$ is bounded, it is in N. As n goes to infinity, $\phi_n f$ converges to f in $L^p(T^2)$ by the dominated convergence theorem. So each f in M is the limit of functions from N. So N is dense in M as desired.

Conversely, if $M = qH^p(T^2)$ with q unimodular, then $M \cap L^2(T^2) = qH^2(T^2)$. So S_1 and S_2 are doubly commuting shifts on $M \cap L^2(T^2)$ by Theorem 1. We finally prove Theorem 3.

Proof. If $M = qH^p(T^2)$, where q is a unimodular function, then $A(M) = \overline{q}H^{p-1}(T^2)$. Therefore, $A(M) \cap L^2(T^2) = \overline{q}H^2(T^2)$. It then follows from Theorem 1 that S_1 and S_2 are doubly commuting shifts on $A(M) \cap L^2(T^2)$. Conversely, if S_1 and S_2 are doubly commuting shifts on $A(M) \cap L^2(T^2)$, then by Theorem 2 we get that $A(M) = qH^{p-1}(T^2)$ where q is a unimodular function. Therefore, $M = \overline{q}H^p(T^2)$ where q is a unimodular function. When $p = \infty$ we need that M is star-closed to make our final conclusion.

References

Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368

E-mail address: redett@math.tamu.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use