Local dual and poly-scale refinability
HTML articles powered by AMS MathViewer
- by Qiyu Sun
- Proc. Amer. Math. Soc. 133 (2005), 1175-1184
- DOI: https://doi.org/10.1090/S0002-9939-04-07622-1
- Published electronically: October 14, 2004
- PDF | Request permission
Abstract:
For a compactly supported function $f$, let $S_n(f), n\ge 0$, be the space of all finite linear combinations of $f(M^n\cdot -k), k\in \mathbf Z$. In this paper, we consider the explicit construction of local duals of $f$ and the poly-scale refinability of functions in $S_0(f)$ when $f$ is an $M$-refinable function. We show that for any $M$-refinable function $f$, there exists a local dual of $f$ in $S_N(f)$ for some $N\ge 0$, and that any function in $S_0(f)$ is poly-scale refinable.References
- Asher Ben-Artzi and Amos Ron, On the integer translates of a compactly supported function: dual bases and linear projectors, SIAM J. Math. Anal. 21 (1990), no. 6, 1550–1562. MR 1075591, DOI 10.1137/0521085
- Charles K. Chui (ed.), Wavelets, Wavelet Analysis and its Applications, vol. 2, Academic Press, Inc., Boston, MA, 1992. A tutorial in theory and applications. MR 1161244, DOI 10.1016/B978-0-12-174590-5.50029-0
- Charles K. Chui, Wenjie He, and Joachim Stöckler, Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comput. Harmon. Anal. 13 (2002), no. 3, 224–262. MR 1942743, DOI 10.1016/S1063-5203(02)00510-9
- Charles K. Chui, Wenjie He, Joachim Stöckler, and Qiyu Sun, Compactly supported tight affine frames with integer dilations and maximum vanishing moments, Adv. Comput. Math. 18 (2003), no. 2-4, 159–187. Frames. MR 1968118, DOI 10.1023/A:1021318804341
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Ingrid Daubechies, Bin Han, Amos Ron, and Zuowei Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003), no. 1, 1–46. MR 1971300, DOI 10.1016/S1063-5203(02)00511-0
- S. Dekel and N. Dyn, Poly-scale refinability and subdivision, Appl. Comput. Harmon. Anal. 13 (2002), no. 1, 35–62. MR 1930175, DOI 10.1016/S1063-5203(02)00006-4
- George C. Donovan, Jeffrey S. Geronimo, and Douglas P. Hardin, Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets, SIAM J. Math. Anal. 27 (1996), no. 6, 1791–1815. MR 1416519, DOI 10.1137/S0036141094276160
- P. G. Lemarié-Rieusset, On the existence of compactly supported dual wavelets, Appl. Comput. Harmon. Anal. 4 (1997), no. 1, 117–118. MR 1429683, DOI 10.1006/acha.1996.0199
- Rong Qing Jia and Charles A. Micchelli, On linear independence for integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 1, 69–85. MR 1200188, DOI 10.1017/S0013091500005903
- Qi Yu Sun, Compactly supported distributional solutions of nonstationary nonhomogeneous refinement equations, Acta Math. Sin. (Engl. Ser.) 17 (2001), no. 1, 1–14. MR 1831741, DOI 10.1007/s101140000092
- Q. Sun, N. Bi and D. Huang, “An Introduction to Multiband Wavelets”, Zhejiang University Press, China, 2001.
- Amos Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx. 5 (1989), no. 3, 297–308. MR 996932, DOI 10.1007/BF01889611
- Kang Zhao, Global linear independence and finitely supported dual basis, SIAM J. Math. Anal. 23 (1992), no. 5, 1352–1355. MR 1177795, DOI 10.1137/0523077
Bibliographic Information
- Qiyu Sun
- Affiliation: Department of Mathematics, University of Central Florida, Orlando, Florida 32816
- Email: qsun@mail.ucf.edu
- Received by editor(s): December 17, 2002
- Received by editor(s) in revised form: December 8, 2003
- Published electronically: October 14, 2004
- Additional Notes: Partial results of this paper were announced in the 2002 Fall Southeastern Section Meeting of AMS, Orlando, November 9–10, 2002
- Communicated by: David R. Larson
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 1175-1184
- MSC (2000): Primary 42C40, 41A65
- DOI: https://doi.org/10.1090/S0002-9939-04-07622-1
- MathSciNet review: 2117220