## On the existence of Pettis integrable functions which are not Birkhoff integrable

HTML articles powered by AMS MathViewer

- by José Rodríguez
- Proc. Amer. Math. Soc.
**133**(2005), 1157-1163 - DOI: https://doi.org/10.1090/S0002-9939-04-07665-8
- Published electronically: September 29, 2004
- PDF | Request permission

## Abstract:

Let $X$ be a weakly Lindelöf determined Banach space. We prove that if $X$ is non-separable, then there exist a complete probability space $(\Omega ,\Sigma ,\mu )$ and a bounded Pettis integrable function $f:\Omega \longrightarrow X$ that is not Birkhoff integrable; when the density character of $X$ is greater than or equal to the continuum, then $f$ is defined on $[0,1]$ with the Lebesgue measure. Moreover, in the particular case $X=c_{0}(I)$ (the cardinality of $I$ being greater than or equal to the continuum) the function $f$ can be taken as the pointwise limit of a uniformly bounded sequence of Birkhoff integrable functions, showing that the analogue of Lebesgue’s dominated convergence theorem for the Birkhoff integral does not hold in general.## References

- Garrett Birkhoff,
*Integration of functions with values in a Banach space*, Trans. Amer. Math. Soc.**38**(1935), no. 2, 357–378. MR**1501815**, DOI 10.1090/S0002-9947-1935-1501815-3 - B. Cascales and J. Rodríguez,
*The Birkhoff integral and the property of Bourgain*, To appear in Math. Ann. - Donald L. Cohn,
*Measure theory*, Birkhäuser Boston, Inc., Boston, MA, 1993. Reprint of the 1980 original. MR**1454121** - L. Di Piazza and D. Preiss,
*When do McShane and Pettis integrals coincide?*, Illinois J. Math.**47**(2003), no. 4, 1177–1187. MR**2036997**, DOI 10.1215/ijm/1258138098 - J. Diestel and J. J. Uhl Jr.,
*Vector measures*, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR**0453964**, DOI 10.1090/surv/015 - Marián J. Fabian,
*Gâteaux differentiability of convex functions and topology*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997. Weak Asplund spaces; A Wiley-Interscience Publication. MR**1461271** - Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, and Václav Zizler,
*Functional analysis and infinite-dimensional geometry*, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 8, Springer-Verlag, New York, 2001. MR**1831176**, DOI 10.1007/978-1-4757-3480-5 - D. H. Fremlin,
*The generalized McShane integral*, Illinois J. Math.**39**(1995), no. 1, 39–67. MR**1299648**, DOI 10.1215/ijm/1255986628 - —,
*The McShane and Birkhoff integrals of vector-valued functions*, University of Essex Mathematics Department Research Report 92-10, 1999. - D. H. Fremlin and J. Mendoza,
*On the integration of vector-valued functions*, Illinois J. Math.**38**(1994), no. 1, 127–147. MR**1245838**, DOI 10.1215/ijm/1255986891 - Russell Gordon,
*Riemann integration in Banach spaces*, Rocky Mountain J. Math.**21**(1991), no. 3, 923–949. MR**1138145**, DOI 10.1216/rmjm/1181072923 - V. M. Kadets and L. M. Tseytlin,
*On “integration” of non-integrable vector-valued functions*, Mat. Fiz. Anal. Geom.**7**(2000), no. 1, 49–65 (English, with English, Russian and Ukrainian summaries). MR**1760946** - Kazimierz Musiał,
*Topics in the theory of Pettis integration*, Rend. Istit. Mat. Univ. Trieste**23**(1991), no. 1, 177–262 (1993). School on Measure Theory and Real Analysis (Grado, 1991). MR**1248654** - Kazimierz Musiał,
*Pettis integral*, Handbook of measure theory, Vol. I, II, North-Holland, Amsterdam, 2002, pp. 531–586. MR**1954622**, DOI 10.1016/B978-044450263-6/50013-0 - B. J. Pettis,
*On integration in vector spaces*, Trans. Amer. Math. Soc.**44**(1938), no. 2, 277–304. MR**1501970**, DOI 10.1090/S0002-9947-1938-1501970-8 - R. S. Phillips,
*Integration in a convex linear topological space*, Trans. Amer. Math. Soc.**47**(1940), 114–145. MR**2707**, DOI 10.1090/S0002-9947-1940-0002707-3 - A. N. Plichko,
*On projective resolutions of the identity operator and Markushevich bases*, Soviet Math. Dokl.**25**(1982), no. 2, 386–389. - Michel Talagrand,
*Pettis integral and measure theory*, Mem. Amer. Math. Soc.**51**(1984), no. 307, ix+224. MR**756174**, DOI 10.1090/memo/0307 - M. Valdivia,
*Simultaneous resolutions of the identity operator in normed spaces*, Collect. Math.**42**(1991), no. 3, 265–284 (1992). MR**1203185**

## Bibliographic Information

**José Rodríguez**- Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30.100 Espinardo, Murcia, Spain
- Email: joserr@um.es
- Received by editor(s): December 2, 2003
- Published electronically: September 29, 2004
- Additional Notes: This research was supported by grant BFM2002-01719 of MCYT and FPU grant of MECD (Spain)
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2004
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**133**(2005), 1157-1163 - MSC (2000): Primary 28B05, 46G10; Secondary 46B26
- DOI: https://doi.org/10.1090/S0002-9939-04-07665-8
- MathSciNet review: 2117218