Polynomials on Banach spaces with unconditional bases
HTML articles powered by AMS MathViewer
- by Bogdan C. Grecu and Raymond A. Ryan PDF
- Proc. Amer. Math. Soc. 133 (2005), 1083-1091 Request permission
Abstract:
We study the classes of homogeneous polynomials on a Banach space with unconditional Schauder basis that have unconditionally convergent monomial expansions relative to this basis. We extend some results of Matos, and we show that the homogeneous polynomials with unconditionally convergent expansions coincide with the polynomials that are regular with respect to the Banach lattices structure of the domain.References
- Andreas Defant, Juan Carlos Díaz, Domingo García, and Manuel Maestre, Unconditional basis and Gordon-Lewis constants for spaces of polynomials, J. Funct. Anal. 181 (2001), no. 1, 119–145. MR 1818112, DOI 10.1006/jfan.2000.3702
- Seán Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. MR 1705327, DOI 10.1007/978-1-4471-0869-6
- B. R. Gelbaum and J. Gil de Lamadrid, Bases of tensor products of Banach spaces, Pacific J. Math. 11 (1961), 1281–1286. MR 147881, DOI 10.2140/pjm.1961.11.1281
- S. Kwapień and A. Pełczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43–68. MR 270118, DOI 10.4064/sm-34-1-43-67
- Mário C. Matos, On holomorphy in Banach spaces and absolute convergence of Fourier series, Portugal. Math. 45 (1988), no. 4, 429–450. MR 982911
- Mário C. Matos and Leopoldo Nachbin, Reinhardt domains of holomorphy in Banach spaces, Adv. Math. 92 (1992), no. 2, 266–278. MR 1155467, DOI 10.1016/0001-8708(92)90066-T
- Peter Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. MR 1128093, DOI 10.1007/978-3-642-76724-1
- Raymond A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2002. MR 1888309, DOI 10.1007/978-1-4471-3903-4
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039, DOI 10.1007/978-3-642-65970-6
Additional Information
- Bogdan C. Grecu
- Affiliation: Department of Mathematics, National University of Ireland, Galway, Ireland
- Email: bogdan@wuzwuz.nuigalway.ie
- Raymond A. Ryan
- Affiliation: Department of Mathematics, National University of Ireland, Galway, Ireland
- Email: ray.ryan@nuigalway.ie
- Received by editor(s): November 19, 2003
- Published electronically: November 19, 2004
- Additional Notes: The first author acknowledges the support of a Postdoctoral Fellowship funded by Enterprise Ireland.
The second author acknowledges the support of a Basic Research Grant from Enterprise Ireland. - Communicated by: N. Tomczak-Jaegermann
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1083-1091
- MSC (2000): Primary 46B15, 46G20; Secondary 46B42, 46B28
- DOI: https://doi.org/10.1090/S0002-9939-04-07738-X
- MathSciNet review: 2117209