Hilbert-Samuel coefficients and postulation numbers of graded components of certain local cohomology modules
HTML articles powered by AMS MathViewer
- by M. Brodmann and F. Rohrer
- Proc. Amer. Math. Soc. 133 (2005), 987-993
- DOI: https://doi.org/10.1090/S0002-9939-04-07779-2
- Published electronically: November 19, 2004
- PDF | Request permission
Abstract:
Let $R = \bigoplus _{n \geq 0} R_n$ be a Noetherian homogeneous ring with one-dimensional local base ring $(R_0, {\mathfrak m}_0)$. Let ${\mathfrak q}_0 \subseteq R_0$ be an ${\mathfrak m}_0$-primary ideal, let $M$ be a finitely generated graded $R$-module and let $i \in {\mathbb N}_0$. Let $H^i_{R_+}(M)$ denote the $i$-th local cohomology module of $M$ with respect to the irrelevant ideal $R_+:= \bigoplus _{n > 0} R_n$ of $R$. We show that the first Hilbert-Samuel coefficient $e_1 \big ( {\mathfrak q}_0, H^i_{R_+}(M)_n \big )$ of the $n$-th graded component of $H^i_{R_+}(M)$ with respect to ${\mathfrak q}_0$ is antipolynomial of degree $< i$ in $n$. In addition, we prove that the postulation numbers of the components $H^i_{R_+} (M)_n$ with respect to ${\mathfrak q}_0$ have a common upper bound.References
- M. Brodmann, S. Fumasoli, and C. S. Lim, Low-codimensional associated primes of graded components of local cohomology modules, J. Algebra 275 (2004), no. 2, 867–882. MR 2052643, DOI 10.1016/j.jalgebra.2003.12.003
- M. Brodmann, S. Fumasoli, and R. Tajarod, Local cohomology over homogeneous rings with one-dimensional local base ring, Proc. Amer. Math. Soc. 131 (2003), no. 10, 2977–2985. MR 1993202, DOI 10.1090/S0002-9939-03-07009-6
- M. Brodmann and M. Hellus, Cohomological patterns of coherent sheaves over projective schemes, J. Pure Appl. Algebra 172 (2002), no. 2-3, 165–182. MR 1906872, DOI 10.1016/S0022-4049(01)00144-X
- Markus P. Brodmann, Mordechai Katzman, and Rodney Y. Sharp, Associated primes of graded components of local cohomology modules, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4261–4283. MR 1926875, DOI 10.1090/S0002-9947-02-02987-2
- M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR 1613627, DOI 10.1017/CBO9780511629204
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Mordechai Katzman, An example of an infinite set of associated primes of a local cohomology module, J. Algebra 252 (2002), no. 1, 161–166. MR 1922391, DOI 10.1016/S0021-8693(02)00032-7
- D. Kirby, Artinian modules and Hilbert polynomials, Quart. J. Math. Oxford Ser. (2) 24 (1973), 47–57. MR 316446, DOI 10.1093/qmath/24.1.47
- C.S. LIM: Graded local cohomology modules and their associated primes, Communications in Algebra 32, No 2 (2004), 727–745.
- Anurag K. Singh, $p$-torsion elements in local cohomology modules, Math. Res. Lett. 7 (2000), no. 2-3, 165–176. MR 1764314, DOI 10.4310/MRL.2000.v7.n2.a3
- Ngô Việt Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987), no. 2, 229–236. MR 902533, DOI 10.1090/S0002-9939-1987-0902533-1
Bibliographic Information
- M. Brodmann
- Affiliation: Institute of Mathematics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- MR Author ID: 41830
- Email: brodmann@math.unizh.ch
- F. Rohrer
- Affiliation: Institute of Mathematics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Email: fred@math.unizh.ch
- Received by editor(s): December 1, 2003
- Published electronically: November 19, 2004
- Communicated by: Bernd Ulrich
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 987-993
- MSC (2000): Primary 13D45, 13E10
- DOI: https://doi.org/10.1090/S0002-9939-04-07779-2
- MathSciNet review: 2117198