Embedding $B_\infty$ into Muckenhoupt classes
HTML articles powered by AMS MathViewer
- by Themis Mitsis
- Proc. Amer. Math. Soc. 133 (2005), 1057-1061
- DOI: https://doi.org/10.1090/S0002-9939-04-07803-7
- Published electronically: November 3, 2004
- PDF | Request permission
Abstract:
What is the smallest $p$ for which a weight in the reverse Hölder class $B_\infty$ also belongs to the Muckenhoupt class $A_p$? We give an asymptotically sharp answer to this question.References
- Kenneth F. Andersen and Wo-Sang Young, On the reverse weak type inequality for the Hardy maximal function and the weighted classes $L(\textrm {log}\,L)^{k}$, Pacific J. Math. 112 (1984), no. 2, 257–264. MR 743983, DOI 10.2140/pjm.1984.112.257
- David Cruz-Uribe and C. J. Neugebauer, The structure of the reverse Hölder classes, Trans. Amer. Math. Soc. 347 (1995), no. 8, 2941–2960. MR 1308005, DOI 10.1090/S0002-9947-1995-1308005-6
- Bruno Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), no. 1, 125–158. MR 1040042, DOI 10.1090/S0002-9947-1991-1040042-8
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Benjamin Muckenhoupt, Weighted reverse weak type inequalities for the Hardy-Littlewood maximal function, Pacific J. Math. 117 (1985), no. 2, 371–377. MR 779926, DOI 10.2140/pjm.1985.117.371
- E. M. Stein, Note on the class $L$ $\textrm {log}$ $L$, Studia Math. 32 (1969), 305–310. MR 247534, DOI 10.4064/sm-32-3-305-310
Bibliographic Information
- Themis Mitsis
- Affiliation: Department of Mathematics, University of Crete, Knossos Ave., 71409 Iraklio, Greece
- Email: mitsis@fourier.math.uoc.gr
- Received by editor(s): October 14, 2003
- Published electronically: November 3, 2004
- Communicated by: Andreas Seeger
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1057-1061
- MSC (2000): Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-04-07803-7
- MathSciNet review: 2117206