On questions of Fatou and Eremenko
HTML articles powered by AMS MathViewer
- by P. J. Rippon and G. M. Stallard
- Proc. Amer. Math. Soc. 133 (2005), 1119-1126
- DOI: https://doi.org/10.1090/S0002-9939-04-07805-0
- Published electronically: October 18, 2004
- PDF | Request permission
Abstract:
Let $f$ be a transcendental entire function and let $I(f)$ be the set of points whose iterates under $f$ tend to infinity. We show that $I(f)$ has at least one unbounded component. In the case that $f$ has a Baker wandering domain, we show that $I(f)$ is a connected unbounded set.References
- I. N. Baker, An entire function which has wandering domains, J. Austral. Math. Soc. Ser. A 22 (1976), no. 2, 173–176. MR 419759, DOI 10.1017/s1446788700015287
- I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. (3) 49 (1984), no. 3, 563–576. MR 759304, DOI 10.1112/plms/s3-49.3.563
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- Walter Bergweiler, Invariant domains and singularities, Math. Proc. Cambridge Philos. Soc. 117 (1995), no. 3, 525–532. MR 1317494, DOI 10.1017/S0305004100073345
- Walter Bergweiler and A. Hinkkanen, On semiconjugation of entire functions, Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 3, 565–574. MR 1684251, DOI 10.1017/S0305004198003387
- Robert L. Devaney and Folkert Tangerman, Dynamics of entire functions near the essential singularity, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 489–503. MR 873428, DOI 10.1017/S0143385700003655
- A. È. Erëmenko, On the iteration of entire functions, Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 339–345. MR 1102727
- P. Fatou. Sur l’itération des fonctions transcendantes entières. Acta Math., 47 (1926), 337–370.
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- Masashi Kisaka, On the connectivity of Julia sets of transcendental entire functions, Ergodic Theory Dynam. Systems 18 (1998), no. 1, 189–205. MR 1609471, DOI 10.1017/S0143385798097570
- M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press, New York, 1961. Second edition, reprinted. MR 0132534
- Dierk Schleicher and Johannes Zimmer, Escaping points of exponential maps, J. London Math. Soc. (2) 67 (2003), no. 2, 380–400. MR 1956142, DOI 10.1112/S0024610702003897
- P. J. Rippon and G. M. Stallard, On sets where iterates of a meromorphic function zip towards infinity, Bull. London Math. Soc. 32 (2000), no. 5, 528–536. MR 1767705, DOI 10.1112/S002460930000730X
Bibliographic Information
- P. J. Rippon
- Affiliation: Department of Pure Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
- MR Author ID: 190595
- Email: p.j.rippon@open.ac.uk
- G. M. Stallard
- Affiliation: Department of Pure Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
- MR Author ID: 292621
- Email: g.m.stallard@open.ac.uk
- Received by editor(s): April 4, 2003
- Received by editor(s) in revised form: November 28, 2003
- Published electronically: October 18, 2004
- Communicated by: Michael Handel
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1119-1126
- MSC (2000): Primary 37F10; Secondary 37F45
- DOI: https://doi.org/10.1090/S0002-9939-04-07805-0
- MathSciNet review: 2117213
Dedicated: This paper is dedicated to the memory of Professor Noel Baker