## Scaling exponents of self-similar functions and wavelet analysis

HTML articles powered by AMS MathViewer

- by Koichi Saka PDF
- Proc. Amer. Math. Soc.
**133**(2005), 1035-1045 Request permission

## Abstract:

In this paper we give estimations of the pointwise scaling exponents of self-similar functions on the $n$-dimensional Euclidean space ${\mathbb R}^{n}$. These estimations are derived by using a technique based on wavelet analysis. Examples of such self-similar functions include indefinite integrals of self-similar measures on ${\mathbb R}$, and they also include widely oscillatory functions (e.g. the Takagi function, the Weierstrass function and Lévy’s function). Pointwise scaling exponents provide an objective description of an irregularity of a function at a point. Our results are applied to compute the scaling exponents of several oscillatory functions.## References

- Mourad Ben Slimane,
*Multifractal formalism and anisotropic selfsimilar functions*, Math. Proc. Cambridge Philos. Soc.**124**(1998), no. 2, 329–363. MR**1631127**, DOI 10.1017/S0305004198002710 - M. Ben Slimane,
*Multifractal formalism for self-similar functions under the action of nonlinear dynamical systems*, Constr. Approx.**15**(1999), no. 2, 209–240. MR**1668925**, DOI 10.1007/s003659900105 - Stéphane Jaffard,
*Old friends revisited: the multifractal nature of some classical functions*, J. Fourier Anal. Appl.**3**(1997), no. 1, 1–22. MR**1428813**, DOI 10.1007/s00041-001-4047-y - S. Jaffard,
*Multifractal formalism for functions. I. Results valid for all functions*, SIAM J. Math. Anal.**28**(1997), no. 4, 944–970. MR**1453315**, DOI 10.1137/S0036141095282991 - S. Jaffard,
*Multifractal formalism for functions. I. Results valid for all functions*, SIAM J. Math. Anal.**28**(1997), no. 4, 944–970. MR**1453315**, DOI 10.1137/S0036141095282991 - Stéphane Mallat,
*A wavelet tour of signal processing*, Academic Press, Inc., San Diego, CA, 1998. MR**1614527** - Yves Meyer,
*Wavelets, vibrations and scalings*, CRM Monograph Series, vol. 9, American Mathematical Society, Providence, RI, 1998. With a preface in French by the author. MR**1483896**, DOI 10.1090/crmm/009 - Robert S. Strichartz,
*Self-similar measures and their Fourier transforms. I*, Indiana Univ. Math. J.**39**(1990), no. 3, 797–817. MR**1078738**, DOI 10.1512/iumj.1990.39.39038 - Robert S. Strichartz,
*Self-similar measures and their Fourier transforms. II*, Trans. Amer. Math. Soc.**336**(1993), no. 1, 335–361. MR**1081941**, DOI 10.1090/S0002-9947-1993-1081941-2 - Robert S. Strichartz,
*Self-similar measures and their Fourier transforms. III*, Indiana Univ. Math. J.**42**(1993), no. 2, 367–411. MR**1237052**, DOI 10.1512/iumj.1993.42.42018 - H. Triebel,
*Theory of function spaces*, Mathematik und ihre Anwendungen in Physik und Technik [Mathematics and its Applications in Physics and Technology], vol. 38, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1983. MR**730762**, DOI 10.1007/978-3-0346-0416-1

## Additional Information

**Koichi Saka**- Affiliation: Department of Mathematics, Akita University, Akita, 010-8502 Japan
- Email: saka@math.akita-u.ac.jp
- Received by editor(s): April 25, 2001
- Received by editor(s) in revised form: July 8, 2003
- Published electronically: November 19, 2004
- Communicated by: David R. Larson
- © Copyright 2004
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**133**(2005), 1035-1045 - MSC (2000): Primary 28A80; Secondary 42C40
- DOI: https://doi.org/10.1090/S0002-9939-04-07806-2
- MathSciNet review: 2117204