K-theory tools for local and asymptotic cyclic cohomology
HTML articles powered by AMS MathViewer
- by Vahid Shirbisheh
- Proc. Amer. Math. Soc. 133 (2005), 1185-1195
- DOI: https://doi.org/10.1090/S0002-9939-04-07807-4
- Published electronically: November 1, 2004
- PDF | Request permission
Abstract:
A generalization of the Connes-Thom isomorphism is given for stable, homotopy invariant, and split exact functors on separable $C^*$-algebras. As examples of these functors, we concentrate on asymptotic and local cyclic cohomology, and the result is applied to improve some formulas in asymptotic and local cyclic cohomology of $C^*$-algebras. As another application, it is shown that these cyclic theories are rigid under Rieffel’s deformation quantizations.References
- Beatriz Abadie, “Vector bundles” over quantum Heisenberg manifolds, Algebraic methods in operator theory, Birkhäuser Boston, Boston, MA, 1994, pp. 307–315. MR 1284956, DOI 10.1007/978-1-4612-0255-4_{3}0
- Beatriz Abadie, Generalized fixed-point algebras of certain actions on crossed products, Pacific J. Math. 171 (1995), no. 1, 1–21. MR 1362977, DOI 10.2140/pjm.1995.171.1
- Beatriz Abadie, Søren Eilers, and Ruy Exel, Morita equivalence for crossed products by Hilbert $C^*$-bimodules, Trans. Amer. Math. Soc. 350 (1998), no. 8, 3043–3054. MR 1467459, DOI 10.1090/S0002-9947-98-02133-3
- Bruce Blackadar, $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867, DOI 10.1007/978-1-4613-9572-0
- Lawrence G. Brown, Philip Green, and Marc A. Rieffel, Stable isomorphism and strong Morita equivalence of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 349–363. MR 463928, DOI 10.2140/pjm.1977.71.349
- Joachim Cuntz, Generalized homomorphisms between $C^{\ast }$-algebras and $KK$-theory, Dynamics and processes (Bielefeld, 1981) Lecture Notes in Math., vol. 1031, Springer, Berlin, 1983, pp. 31–45. MR 733641, DOI 10.1007/BFb0072109
- Joachim Cuntz, $K$-theory and $C^{\ast }$-algebras, Algebraic $K$-theory, number theory, geometry and analysis (Bielefeld, 1982) Lecture Notes in Math., vol. 1046, Springer, Berlin, 1984, pp. 55–79. MR 750677, DOI 10.1007/BFb0072018
- Joachim Cuntz, A new look at $KK$-theory, $K$-Theory 1 (1987), no. 1, 31–51. MR 899916, DOI 10.1007/BF00533986
- Ruy Exel, Circle actions on $C^*$-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence, J. Funct. Anal. 122 (1994), no. 2, 361–401. MR 1276163, DOI 10.1006/jfan.1994.1073
- Thierry Fack and Georges Skandalis, Connes’ analogue of the Thom isomorphism for the Kasparov groups, Invent. Math. 64 (1981), no. 1, 7–14. MR 621767, DOI 10.1007/BF01393931
- Nigel Higson, A characterization of $KK$-theory, Pacific J. Math. 126 (1987), no. 2, 253–276. MR 869779, DOI 10.2140/pjm.1987.126.253
- M. Khoshkam and G. Skandalis, Toeplitz algebras associated with endomorphisms and Pimsner-Voiculescu exact sequences, Pacific J. Math. 181 (1997), no. 2, 315–331. MR 1486534, DOI 10.2140/pjm.1997.181.315
- Meyer, R. Comparisons between periodic, analytic, and local cyclic cohomology, math.KT/ 0205276.
- Ryszard Nest and Boris Tsygan, Algebraic index theorem for families, Adv. Math. 113 (1995), no. 2, 151–205. MR 1337107, DOI 10.1006/aima.1995.1037
- Ryszard Nest and Boris Tsygan, Algebraic index theorem for families, Adv. Math. 113 (1995), no. 2, 151–205. MR 1337107, DOI 10.1006/aima.1995.1037
- Michael V. Pimsner, A class of $C^*$-algebras generalizing both Cuntz-Krieger algebras and crossed products by $\textbf {Z}$, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 189–212. MR 1426840
- M. Pimsner and D. Voiculescu, Exact sequences for $K$-groups and Ext-groups of certain cross-product $C^{\ast }$-algebras, J. Operator Theory 4 (1980), no. 1, 93–118. MR 587369
- Michael Puschnigg, Asymptotic cyclic cohomology, Lecture Notes in Mathematics, vol. 1642, Springer-Verlag, Berlin, 1996. MR 1482804, DOI 10.1007/BFb0094458
- Puschnigg, M. Cyclic homology theories for topological algebras. $K$-theory Preprint Archives 292.
- Michael Puschnigg, Excision in cyclic homology theories, Invent. Math. 143 (2001), no. 2, 249–323. MR 1835389, DOI 10.1007/s002220000105
- Marc A. Rieffel, Deformation quantization of Heisenberg manifolds, Comm. Math. Phys. 122 (1989), no. 4, 531–562. MR 1002830, DOI 10.1007/BF01256492
- Marc A. Rieffel, Noncommutative tori—a case study of noncommutative differentiable manifolds, Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988) Contemp. Math., vol. 105, Amer. Math. Soc., Providence, RI, 1990, pp. 191–211. MR 1047281, DOI 10.1090/conm/105/1047281
- Marc A. Rieffel, Deformation quantization for actions of $\textbf {R}^d$, Mem. Amer. Math. Soc. 106 (1993), no. 506, x+93. MR 1184061, DOI 10.1090/memo/0506
- Marc A. Rieffel, $K$-groups of $C^*$-algebras deformed by actions of $\textbf {R}^d$, J. Funct. Anal. 116 (1993), no. 1, 199–214. MR 1237992, DOI 10.1006/jfan.1993.1110
- Rosenberg, J. M. Rigidity of $K$-theory under deformation quantization. q-alg/ 9607021.
- Jonathan Rosenberg, Behavior of $K$-theory under quantization, Operator algebras and quantum field theory (Rome, 1996) Int. Press, Cambridge, MA, 1997, pp. 404–415. MR 1491131
Bibliographic Information
- Vahid Shirbisheh
- Affiliation: Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7
- Email: vshirbis@uwo.ca
- Received by editor(s): March 26, 2002
- Received by editor(s) in revised form: December 10, 2003
- Published electronically: November 1, 2004
- Communicated by: David R. Larson
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1185-1195
- MSC (2000): Primary 46L80; Secondary 46L65
- DOI: https://doi.org/10.1090/S0002-9939-04-07807-4
- MathSciNet review: 2117221