## K-theory tools for local and asymptotic cyclic cohomology

HTML articles powered by AMS MathViewer

- by Vahid Shirbisheh PDF
- Proc. Amer. Math. Soc.
**133**(2005), 1185-1195 Request permission

## Abstract:

A generalization of the Connes-Thom isomorphism is given for stable, homotopy invariant, and split exact functors on separable $C^*$-algebras. As examples of these functors, we concentrate on asymptotic and local cyclic cohomology, and the result is applied to improve some formulas in asymptotic and local cyclic cohomology of $C^*$-algebras. As another application, it is shown that these cyclic theories are rigid under Rieffel’s deformation quantizations.## References

- Beatriz Abadie,
*“Vector bundles” over quantum Heisenberg manifolds*, Algebraic methods in operator theory, Birkhäuser Boston, Boston, MA, 1994, pp. 307–315. MR**1284956**, DOI 10.1007/978-1-4612-0255-4_{3}0 - Beatriz Abadie,
*Generalized fixed-point algebras of certain actions on crossed products*, Pacific J. Math.**171**(1995), no. 1, 1–21. MR**1362977**, DOI 10.2140/pjm.1995.171.1 - Beatriz Abadie, Søren Eilers, and Ruy Exel,
*Morita equivalence for crossed products by Hilbert $C^*$-bimodules*, Trans. Amer. Math. Soc.**350**(1998), no. 8, 3043–3054. MR**1467459**, DOI 10.1090/S0002-9947-98-02133-3 - Bruce Blackadar,
*$K$-theory for operator algebras*, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR**859867**, DOI 10.1007/978-1-4613-9572-0 - Lawrence G. Brown, Philip Green, and Marc A. Rieffel,
*Stable isomorphism and strong Morita equivalence of $C^*$-algebras*, Pacific J. Math.**71**(1977), no. 2, 349–363. MR**463928**, DOI 10.2140/pjm.1977.71.349 - Joachim Cuntz,
*Generalized homomorphisms between $C^{\ast }$-algebras and $KK$-theory*, Dynamics and processes (Bielefeld, 1981) Lecture Notes in Math., vol. 1031, Springer, Berlin, 1983, pp. 31–45. MR**733641**, DOI 10.1007/BFb0072109 - Joachim Cuntz,
*$K$-theory and $C^{\ast }$-algebras*, Algebraic $K$-theory, number theory, geometry and analysis (Bielefeld, 1982) Lecture Notes in Math., vol. 1046, Springer, Berlin, 1984, pp. 55–79. MR**750677**, DOI 10.1007/BFb0072018 - Joachim Cuntz,
*A new look at $KK$-theory*, $K$-Theory**1**(1987), no. 1, 31–51. MR**899916**, DOI 10.1007/BF00533986 - Ruy Exel,
*Circle actions on $C^*$-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence*, J. Funct. Anal.**122**(1994), no. 2, 361–401. MR**1276163**, DOI 10.1006/jfan.1994.1073 - Thierry Fack and Georges Skandalis,
*Connes’ analogue of the Thom isomorphism for the Kasparov groups*, Invent. Math.**64**(1981), no. 1, 7–14. MR**621767**, DOI 10.1007/BF01393931 - Nigel Higson,
*A characterization of $KK$-theory*, Pacific J. Math.**126**(1987), no. 2, 253–276. MR**869779**, DOI 10.2140/pjm.1987.126.253 - M. Khoshkam and G. Skandalis,
*Toeplitz algebras associated with endomorphisms and Pimsner-Voiculescu exact sequences*, Pacific J. Math.**181**(1997), no. 2, 315–331. MR**1486534**, DOI 10.2140/pjm.1997.181.315 - Meyer, R. Comparisons between periodic, analytic, and local cyclic cohomology, math.KT/
**0205276**. - Ryszard Nest and Boris Tsygan,
*Algebraic index theorem for families*, Adv. Math.**113**(1995), no. 2, 151–205. MR**1337107**, DOI 10.1006/aima.1995.1037 - Ryszard Nest and Boris Tsygan,
*Algebraic index theorem for families*, Adv. Math.**113**(1995), no. 2, 151–205. MR**1337107**, DOI 10.1006/aima.1995.1037 - Michael V. Pimsner,
*A class of $C^*$-algebras generalizing both Cuntz-Krieger algebras and crossed products by $\textbf {Z}$*, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 189–212. MR**1426840** - M. Pimsner and D. Voiculescu,
*Exact sequences for $K$-groups and Ext-groups of certain cross-product $C^{\ast }$-algebras*, J. Operator Theory**4**(1980), no. 1, 93–118. MR**587369** - Michael Puschnigg,
*Asymptotic cyclic cohomology*, Lecture Notes in Mathematics, vol. 1642, Springer-Verlag, Berlin, 1996. MR**1482804**, DOI 10.1007/BFb0094458 - Puschnigg, M. Cyclic homology theories for topological algebras.
*$K$-theory Preprint Archives***292**. - Michael Puschnigg,
*Excision in cyclic homology theories*, Invent. Math.**143**(2001), no. 2, 249–323. MR**1835389**, DOI 10.1007/s002220000105 - Marc A. Rieffel,
*Deformation quantization of Heisenberg manifolds*, Comm. Math. Phys.**122**(1989), no. 4, 531–562. MR**1002830**, DOI 10.1007/BF01256492 - Marc A. Rieffel,
*Noncommutative tori—a case study of noncommutative differentiable manifolds*, Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988) Contemp. Math., vol. 105, Amer. Math. Soc., Providence, RI, 1990, pp. 191–211. MR**1047281**, DOI 10.1090/conm/105/1047281 - Marc A. Rieffel,
*Deformation quantization for actions of $\textbf {R}^d$*, Mem. Amer. Math. Soc.**106**(1993), no. 506, x+93. MR**1184061**, DOI 10.1090/memo/0506 - Marc A. Rieffel,
*$K$-groups of $C^*$-algebras deformed by actions of $\textbf {R}^d$*, J. Funct. Anal.**116**(1993), no. 1, 199–214. MR**1237992**, DOI 10.1006/jfan.1993.1110 - Rosenberg, J. M. Rigidity of $K$-theory under deformation quantization. q-alg/
**9607021**. - Jonathan Rosenberg,
*Behavior of $K$-theory under quantization*, Operator algebras and quantum field theory (Rome, 1996) Int. Press, Cambridge, MA, 1997, pp. 404–415. MR**1491131**

## Additional Information

**Vahid Shirbisheh**- Affiliation: Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7
- Email: vshirbis@uwo.ca
- Received by editor(s): March 26, 2002
- Received by editor(s) in revised form: December 10, 2003
- Published electronically: November 1, 2004
- Communicated by: David R. Larson
- © Copyright 2004
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**133**(2005), 1185-1195 - MSC (2000): Primary 46L80; Secondary 46L65
- DOI: https://doi.org/10.1090/S0002-9939-04-07807-4
- MathSciNet review: 2117221