Subelliptic Cordes estimates
HTML articles powered by AMS MathViewer
- by András Domokos and Juan J. Manfredi
- Proc. Amer. Math. Soc. 133 (2005), 1047-1056
- DOI: https://doi.org/10.1090/S0002-9939-04-07819-0
- Published electronically: November 19, 2004
- PDF | Request permission
Abstract:
We prove Cordes type estimates for subelliptic linear partial differential operators in non-divergence form with measurable coefficients in the Heisenberg group. As an application we establish interior horizontal $W^{2,2}$-regularity for p-harmonic functions in the Heisenberg group ${\mathbb H}^1$ for the range $\frac {\sqrt {17}-1}{2} \leq p < \frac {5+\sqrt {5}}{2}$.References
- Luca Capogna, Donatella Danielli, and Nicola Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations 18 (1993), no. 9-10, 1765–1794. MR 1239930, DOI 10.1080/03605309308820992
- H. O. Cordes, Zero order a priori estimates for solutions of elliptic differential equations, Proc. Sympos. Pure Math., Vol. IV, American Mathematical Society, Providence, R.I., 1961, pp. 157–166. MR 0146511
- A. Domokos, Differentiability of solutions for the non-degenerate $p$-Laplacian in the Heisenberg group, J. Differential Equations 204(2004), 439-470.
- A. Domokos and Juan J. Manfredi, $C^{1,\alpha }$-regularity for p-harmonic functions in the Heisenberg group for $p$ near $2$, to appear in The $p$-harmonic equation and recent advances in analysis, Contemporary Mathematics, editor Pietro Poggi-Corradini.
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Guozhen Lu, Polynomials, higher order Sobolev extension theorems and interpolation inequalities on weighted Folland-Stein spaces on stratified groups, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 3, 405–444. MR 1787096, DOI 10.1007/PL00011552
- S. Marchi, $C^{1,\alpha }$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group for $2\leq p<1+\sqrt 5$, Z. Anal. Anwendungen 20 (2001), no. 3, 617–636. MR 1863937, DOI 10.4171/ZAA/1035
- Silvana Marchi, $C^{1,\alpha }$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac 1{\sqrt 5}<p\leq 2$, Comment. Math. Univ. Carolin. 44 (2003), no. 1, 33–56. MR 2045844
- Duy-Minh Nhieu, Extension of Sobolev spaces on the Heisenberg group, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 12, 1559–1564 (English, with English and French summaries). MR 1367807
- Robert S. Strichartz, $L^p$ harmonic analysis and Radon transforms on the Heisenberg group, J. Funct. Anal. 96 (1991), no. 2, 350–406. MR 1101262, DOI 10.1016/0022-1236(91)90066-E
- Giorgio Talenti, Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl. (4) 69 (1965), 285–304 (Italian). MR 201816, DOI 10.1007/BF02414375
Bibliographic Information
- András Domokos
- Affiliation: Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260
- Address at time of publication: Department of Mathematics and Statistics, California State University Sacramento, 6000 J Street, Sacramento, California 95819
- Email: domokos@csus.edu
- Juan J. Manfredi
- Affiliation: Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260
- MR Author ID: 205679
- Email: manfredi@pitt.edu
- Received by editor(s): August 13, 2003
- Published electronically: November 19, 2004
- Additional Notes: The authors were partially supported by NSF award DMS-0100107
- Communicated by: David S. Tartakoff
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1047-1056
- MSC (2000): Primary 35H20, 35J70
- DOI: https://doi.org/10.1090/S0002-9939-04-07819-0
- MathSciNet review: 2117205