## Subelliptic Cordes estimates

HTML articles powered by AMS MathViewer

- by András Domokos and Juan J. Manfredi
- Proc. Amer. Math. Soc.
**133**(2005), 1047-1056 - DOI: https://doi.org/10.1090/S0002-9939-04-07819-0
- Published electronically: November 19, 2004
- PDF | Request permission

## Abstract:

We prove Cordes type estimates for subelliptic linear partial differential operators in non-divergence form with measurable coefficients in the Heisenberg group. As an application we establish interior horizontal $W^{2,2}$-regularity for p-harmonic functions in the Heisenberg group ${\mathbb H}^1$ for the range $\frac {\sqrt {17}-1}{2} \leq p < \frac {5+\sqrt {5}}{2}$.## References

- Luca Capogna, Donatella Danielli, and Nicola Garofalo,
*An embedding theorem and the Harnack inequality for nonlinear subelliptic equations*, Comm. Partial Differential Equations**18**(1993), no. 9-10, 1765–1794. MR**1239930**, DOI 10.1080/03605309308820992 - H. O. Cordes,
*Zero order a priori estimates for solutions of elliptic differential equations*, Proc. Sympos. Pure Math., Vol. IV, American Mathematical Society, Providence, R.I., 1961, pp. 157–166. MR**0146511** - A. Domokos,
*Differentiability of solutions for the non-degenerate $p$-Laplacian in the Heisenberg group*, J. Differential Equations 204(2004), 439-470. - A. Domokos and Juan J. Manfredi, $C^{1,\alpha }$-regularity for p-harmonic functions in the Heisenberg group for $p$ near $2$, to appear in
*The $p$-harmonic equation and recent advances in analysis*, Contemporary Mathematics, editor Pietro Poggi-Corradini. - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190**, DOI 10.1007/978-3-642-61798-0 - Guozhen Lu,
*Polynomials, higher order Sobolev extension theorems and interpolation inequalities on weighted Folland-Stein spaces on stratified groups*, Acta Math. Sin. (Engl. Ser.)**16**(2000), no. 3, 405–444. MR**1787096**, DOI 10.1007/PL00011552 - S. Marchi,
*$C^{1,\alpha }$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group for $2\leq p<1+\sqrt 5$*, Z. Anal. Anwendungen**20**(2001), no. 3, 617–636. MR**1863937**, DOI 10.4171/ZAA/1035 - Silvana Marchi,
*$C^{1,\alpha }$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac 1{\sqrt 5}<p\leq 2$*, Comment. Math. Univ. Carolin.**44**(2003), no. 1, 33–56. MR**2045844** - Duy-Minh Nhieu,
*Extension of Sobolev spaces on the Heisenberg group*, C. R. Acad. Sci. Paris Sér. I Math.**321**(1995), no. 12, 1559–1564 (English, with English and French summaries). MR**1367807** - Robert S. Strichartz,
*$L^p$ harmonic analysis and Radon transforms on the Heisenberg group*, J. Funct. Anal.**96**(1991), no. 2, 350–406. MR**1101262**, DOI 10.1016/0022-1236(91)90066-E - Giorgio Talenti,
*Sopra una classe di equazioni ellittiche a coefficienti misurabili*, Ann. Mat. Pura Appl. (4)**69**(1965), 285–304 (Italian). MR**201816**, DOI 10.1007/BF02414375

## Bibliographic Information

**András Domokos**- Affiliation: Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260
- Address at time of publication: Department of Mathematics and Statistics, California State University Sacramento, 6000 J Street, Sacramento, California 95819
- Email: domokos@csus.edu
**Juan J. Manfredi**- Affiliation: Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260
- MR Author ID: 205679
- Email: manfredi@pitt.edu
- Received by editor(s): August 13, 2003
- Published electronically: November 19, 2004
- Additional Notes: The authors were partially supported by NSF award DMS-0100107
- Communicated by: David S. Tartakoff
- © Copyright 2004
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**133**(2005), 1047-1056 - MSC (2000): Primary 35H20, 35J70
- DOI: https://doi.org/10.1090/S0002-9939-04-07819-0
- MathSciNet review: 2117205