Geometric inequalities for a class of exponential measures
HTML articles powered by AMS MathViewer
- by Hermann Koenig and Nicole Tomczak-Jaegermann
- Proc. Amer. Math. Soc. 133 (2005), 1213-1221
- DOI: https://doi.org/10.1090/S0002-9939-04-07862-1
- Published electronically: November 19, 2004
- PDF | Request permission
Abstract:
Using $M$-ellipsoids we prove versions of the inverse SantalĂł inequality and the inverse Brunn-Minkowski inequality for a general class of measures replacing the usual volume on $\mathbb {R}^n$. This class contains in particular the Gaussian measure on $\mathbb {R}^n$.References
- J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in $\textbf {R}^n$, Invent. Math. 88 (1987), no. 2, 319â340. MR 880954, DOI 10.1007/BF01388911
- Dario Cordero-Erausquin, SantalĂłâs inequality on $\Bbb C^n$ by complex interpolation, C. R. Math. Acad. Sci. Paris 334 (2002), no. 9, 767â772 (English, with English and French summaries). MR 1905037, DOI 10.1016/S1631-073X(02)02328-2
- D. Cordero-Erausquin, M. Fradelizi and B. Maurey, The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. preprint.
- R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355â405. MR 1898210, DOI 10.1090/S0273-0979-02-00941-2
- Gilles HargĂ©, Une inĂ©galitĂ© de dĂ©corrĂ©lation pour la mesure gaussienne, C. R. Acad. Sci. Paris SĂ©r. I Math. 326 (1998), no. 11, 1325â1328 (French, with English and French summaries). MR 1649146, DOI 10.1016/S0764-4442(98)80188-2
- Vitali D. Milman, InĂ©galitĂ© de Brunn-Minkowski inverse et applications Ă la thĂ©orie locale des espaces normĂ©s, C. R. Acad. Sci. Paris SĂ©r. I Math. 302 (1986), no. 1, 25â28 (English, with French summary). MR 827101
- Gilles Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275, DOI 10.1017/CBO9780511662454
- G. Schechtman, Th. Schlumprecht, and J. Zinn, On the Gaussian measure of the intersection, Ann. Probab. 26 (1998), no. 1, 346â357. MR 1617052, DOI 10.1214/aop/1022855422
Bibliographic Information
- Hermann Koenig
- Affiliation: Mathematisches Seminar, Universitaet Kiel, Ludewig-Meyn-Strasse 4, D-24098 Kiel, Germany
- Email: hkoenig@math.uni-kiel.de
- Nicole Tomczak-Jaegermann
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- MR Author ID: 173265
- Email: nicole@ellpspace.math.ualberta.ca
- Received by editor(s): December 21, 2003
- Published electronically: November 19, 2004
- Additional Notes: The second named author holds the Canada Research Chair in Geometric Analysis.
- Communicated by: David R. Larson
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1213-1221
- MSC (2000): Primary 46B20, 52A21
- DOI: https://doi.org/10.1090/S0002-9939-04-07862-1
- MathSciNet review: 2117224