Properly $3$-realizable groups
HTML articles powered by AMS MathViewer
- by R. Ayala, M. Cárdenas, F. F. Lasheras and A. Quintero
- Proc. Amer. Math. Soc. 133 (2005), 1527-1535
- DOI: https://doi.org/10.1090/S0002-9939-04-07628-2
- Published electronically: November 19, 2004
- PDF | Request permission
Abstract:
A finitely presented group $G$ is said to be properly $3$-realizable if there exists a compact $2$-polyhedron $K$ with $\pi _1(K) \cong G$ and whose universal cover $\tilde {K}$ has the proper homotopy type of a (p.l.) $3$-manifold with boundary. In this paper we show that, after taking wedge with a $2$-sphere, this property does not depend on the choice of the compact $2$-polyhedron $K$ with $\pi _1(K) \cong G$. We also show that (i) all $0$-ended and $2$-ended groups are properly $3$-realizable, and (ii) the class of properly $3$-realizable groups is closed under amalgamated free products (HNN-extensions) over a finite cyclic group (as a step towards proving that $\infty$-ended groups are properly $3$-realizable, assuming $1$-ended groups are).References
- Hans-Joachim Baues and Antonio Quintero, Infinite homotopy theory, $K$-Monographs in Mathematics, vol. 6, Kluwer Academic Publishers, Dordrecht, 2001. MR 1848146, DOI 10.1007/978-94-009-0007-3
- M. Cárdenas, T. Fernández, F. F. Lasheras, and A. Quintero, Embedding proper homotopy types, Colloq. Math. 95 (2003), no. 1, 1–20. MR 1967550, DOI 10.4064/cm95-1-1
- M. Cárdenas, F.F. Lasheras. On properly $3$-realizable groups. Preprint.
- M. J. Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985), no. 3, 449–457. MR 807066, DOI 10.1007/BF01388581
- D. B. A. Epstein, Ends, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 110–117. MR 0158380
- R. Geoghegan. Topological Methods in Group Theory. Book in preparation.
- Bruce Hughes and Andrew Ranicki, Ends of complexes, Cambridge Tracts in Mathematics, vol. 123, Cambridge University Press, Cambridge, 1996. MR 1410261, DOI 10.1017/CBO9780511526299
- Francisco F. Lasheras, Universal covers and 3-manifolds, J. Pure Appl. Algebra 151 (2000), no. 2, 163–172. MR 1775571, DOI 10.1016/S0022-4049(99)00061-4
- Francisco F. Lasheras, A note on fake surfaces and universal covers, Topology Appl. 125 (2002), no. 3, 497–504. MR 1935166, DOI 10.1016/S0166-8641(01)00295-4
- J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR 1702278
- C. T. C. Wall (ed.), Homological group theory, London Mathematical Society Lecture Note Series, vol. 36, Cambridge University Press, Cambridge-New York, 1979. MR 564417
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$-complexes, Ann. of Math. (2) 81 (1965), 56–69. MR 171284, DOI 10.2307/1970382
- J. H. C. Whitehead, Simple homotopy types, Amer. J. Math. 72 (1950), 1–57. MR 35437, DOI 10.2307/2372133
- Perrin Wright, Formal $3$-deformations of $2$-polyhedra, Proc. Amer. Math. Soc. 37 (1973), 305–308. MR 331397, DOI 10.1090/S0002-9939-1973-0331397-2
Bibliographic Information
- R. Ayala
- Affiliation: Departamento de Geometría y Topología, Universidad de Sevilla, Apdo 1160, 41080-Sevilla, Spain
- M. Cárdenas
- Affiliation: Departamento de Geometría y Topología, Universidad de Sevilla, Apdo 1160, 41080-Sevilla, Spain
- F. F. Lasheras
- Affiliation: Departamento de Geometría y Topología, Universidad de Sevilla, Apdo 1160, 41080-Sevilla, Spain
- MR Author ID: 633766
- Email: lasheras@us.es
- A. Quintero
- Affiliation: Departamento de Geometría y Topología, Universidad de Sevilla, Apdo 1160, 41080-Sevilla, Spain
- MR Author ID: 143190
- Received by editor(s): September 29, 2003
- Received by editor(s) in revised form: December 31, 2003
- Published electronically: November 19, 2004
- Additional Notes: This work was partially supported by the project BFM 2001-3195-C02
- Communicated by: Ronald A. Fintushel
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 1527-1535
- MSC (2000): Primary 57M07; Secondary 57M10, 57M20
- DOI: https://doi.org/10.1090/S0002-9939-04-07628-2
- MathSciNet review: 2111954