EXAMPLES OF NON-FORMAL CLOSED \((k - 1)\)-CONNECTED MANIFOLDS OF DIMENSIONS \(\geq 4k - 1\)

ALEX N. DRANISHNIKOV AND YULI B. RUDYAK

(Communicated by Paul Goerss)

Abstract. We construct closed \((k - 1)\)-connected manifolds of dimensions \(\geq 4k - 1\) that possess non-trivial rational Massey triple products. We also construct examples of manifolds \(M\) such that all the cup-products of elements of \(H^k(M)\) vanish, while the group \(H^{3k-1}(M; \mathbb{Q})\) is generated by Massey products: such examples are useful for the theory of systols.

For every \(k\) we construct closed \((k - 1)\)-connected manifolds of dimensions \(\geq 4k - 1\) that possess non-trivial rational Massey triple products and therefore are non-formal. For \(k = 1\) such manifolds can be obtained as the products of Heisenberg manifold with circles. For \(k = 2\) such examples are also known (see e.g. [4, 2]), but even in this case our construction seems more direct and simple.

Miller [3] proved that every closed \((k - 1)\)-connected manifold \(M\) of dimension \(\leq 4k - 2\) is formal. In particular, all rational Massey products in \(M\) vanish. So, neither Miller’s nor our results can be improved.

Recall that a subset \(S\) of a space \(\mathbb{R}^m\) is called radial if, for all points \(s \in S\), the linear segment \([0, s]\) contains precisely one point of \(S\) (namely, \(s\)).

1. Proposition. Let \(B\) be a finite polyhedron in \(\mathbb{R}^m, m > 1\), let \(A\) be a subpolyhedron of \(B\) such that \(A \setminus \{0\}\) is radial in \(\mathbb{R}^m\), and let \(Y\) be a finite polyhedron in \(\mathbb{R}^n\). Then the double cylinder \(Z_f\) of any simplicial map \(f : A \rightarrow Y\) admits a PL embedding in \(\mathbb{R}^{m+n}\).

Proof. We denote by \(0_m\) and \(0_n\) the origins of spaces \(\mathbb{R}^m\) and \(\mathbb{R}^n\), respectively. We first consider the case when \(0_m \notin A\). We assume that \(Y\) is far away from \(0_n\). Let \(\Gamma \in \mathbb{R}^m \times \mathbb{R}^n\) be the graph of the map \(f\). We join every point \((x, f(x)) \in \Gamma, x \in A\) with the point \((0_m, f(x)) \in \mathbb{R}^m \times Y \subset \mathbb{R}^{m+n}\) by the linear segment. Then, since \(A\) is radial, we get an embedding of the mapping cylinder \(M_f\) of \(f\) to \(\mathbb{R}^{m+n}\). Moreover, if we join the points \((x, 0_n)\) with \((x, f(x))\) by the linear segment, we still have an embedding \(M_f \hookrightarrow \mathbb{R}^{m+n}\). Here (the image of) \(M_f\) is formed by segments \([x, 0_n], (x, f(x)]\) and \([(x, f(x)), (0_m, f(x)]\). Finally, we get an embedding of the double mapping cylinder \(Z_f\) to \(\mathbb{R}^{m+n}\) by adding the space \(B\) to the embedded mapping cylinder \(M_f\).

Received by the editors November 17, 2003 and, in revised form, January 9, 2004.

2000 Mathematics Subject Classification. Primary 55S30; Secondary 55P62, 57Q35.
The case \(0_m \in A \) can be considered similarly. We can assume that there is a point \(y_0 \in Y \) that is the closest to \(0_n \in \mathbb{R}^n \), i.e. \(||y_0|| < ||y|| \) if \(y \neq y_0 \) and \(y \in Y \). We can also assume that \(f(0_m) = y_0 \). Consider the map \(f' = f(\{A \setminus \{0\}\}) \) and the embedding \(i : Z_{f'} \to \mathbb{R}^{m+n} \) as above. Then \(i(Z_{f'}) \cup [0_m, y_0] \) is an embedding of \(Z_f \). \(\square \)

2. Corollary. Let \(Y \) be a finite polyhedron in \(\mathbb{R}^n \), and let \(f : \bigvee_i S_i^{m-1} \to Y, i = 1, \ldots, k \), be a simplicial map, where \(S_i^{m-1} \) is the copy of the sphere \(S^{m-1} \). Then the cone \(C_f \) of \(f \) can be simplicially embedded in \(\mathbb{R}^{m+n} \).

Proof. Choose a base point on the boundary of each disc \(D_i^m, i = 1, \ldots, k \), and consider the wedge \(\bigvee_i D_i^m \). We can regard this wedge as a polyhedron in \(\mathbb{R}^n \) such that the base point is the origin and \(\bigvee S_i^{m-1} \setminus \{0\} \) is a radial set. Now the claim follows from Proposition \(\text{[1]} \). \(\square \)

Consider the wedge \(K = S^{k_1} \vee S^{k_2} \vee S^{k_3} \) of spheres with \(k_i \geq 2 \), and let \(\iota_r \in \pi_{k_r}(K) \) be represented by the inclusion map \(S^{k_r} \subset K \). Set \(m = k_1 + k_2 + k_3 - 1, \) let \(f : S^{m-1} \to K \) represent the element \([\iota_1, [\iota_2, \iota_3]] \), and let \(X \) be the cone of the map \(f \). Let \(\alpha_i \in H^{k_i}(X) \) be the cohomology class that takes the value 1 on the cell \(S_i^k \) of \(X \) and 0 on the other cells. We recall the following classical result.

3. Theorem. The Massey product \(\langle \alpha_1, \alpha_2, \alpha_3 \rangle \in H^{k_1+k_2+k_3-1}(X) \) has the zero indeterminacy and takes the value \((-1)^{k_1}\) on the \((m-1)\)-dimensional cell of \(X \).

Proof. See \(\text{[5]} \), Lemma 7. \(\square \)

Now let \(k_1 = k_2 = k_3 = k \), and consider the corresponding space \(X \). According to Proposition \(\text{[1]} \) \(X \) admits a PL embedding in \(\mathbb{R}^N \) with \(N \geq 4k \). Fix such an embedding, and let \(W \) be a closed regular neighborhood of \(X \) in \(\mathbb{R}^N \). So, \(W \) is a manifold with the boundary \(V = \partial W \). Furthermore, \(W \) has the homotopy type of \(X \). (Notice that \(W \) is a PL manifold by the construction, but without loss of generality we can assume that \(W \) is smooth.)

4. Proposition. The manifold \(V \) is \((k-1)\)-connected.

Proof. Consider a sphere \(S^i, i < k \), in \(V \). Since \(W \) is \((k-1)\)-connected, there exists a disk \(D^i+1 \) in \(W \) with \(\partial D^i+1 = S^i \). Since \(i + 1 + \dim X \leq 4k - 1 < N \), we can assume that \(D^i+1 \cap X = \emptyset \). But \(V \) is a retract of \(W \setminus X \), and thus \(S^i \) bounds a disk in \(V \). \(\square \)

5. Proposition. \(H^i(W, V) = H_{N-i}(X) \).

Proof. We have

\[H^i(W, V) = H_{N-i}(W) = H_{N-i}(X) \]

where the first equality holds by the Poincaré duality; see e.g. Dold \(\text{[1]} \). \(\square \)

Consider the map

\[g : V \xrightarrow{i} W \xrightarrow{r} X \]

where \(i \) is the inclusion and \(r \) is a deformation retraction.

6. Theorem. If \(N \neq 5k - 1, 6k - 2 \), then the Massey product \(\langle g^*\alpha_1, g_*\alpha_2, g^*\alpha_3 \rangle \) has zero indeterminacy and is non-zero.
Proof. Notice that \(H_i(X) = 0 \) for \(i \neq 0, k, 3k - 1 \). We have \(H^{2k-1}(W) = H^{2k-1}(X) = 0 \) and \(H^{2k}(W, V) = H_{n-2k}(X) = 0 \). Now, in view of the exactness of the sequence \(H^{2k-1}(W) \to H^{2k-1}(V) \to H^{2k}(W, V) \), we have \(H^{2k-1}(V) = 0 \), and therefore the indeterminacy of the Massey product is zero. Furthermore, the map \(i^* : H^{3k-1}(W) \to H^{3k-1}(V) \) is injective since \(H^{3k-1}(W, V) = H_{n-3k+1}(X) = 0 \). Thus, the map \(g^* : H^{3k-1}(X) \to H^{3k-1}(V) \) is injective. But \(g^*(\alpha_1, g_*\alpha_2, g^*\alpha_3) = \langle g^*\alpha_1, g_*\alpha_2, g^*\alpha_3 \rangle \) because both parts of the equality have zero indeterminacies. \(\square \)

Thus, we have examples of \((k-1)\)-connected manifolds with non-trivial triple Massey product of dimensions \(d \geq 4k - 1 \) but \(d \neq 5k - 2, 6k - 3 \). In order to construct an example in exceptional dimensions, just take the double of the manifold \(W \) (or multiple by the sphere of the corresponding dimension if \(k \neq 2 \)).

When we put the first version of the paper into the e-archive, Mikhail Katz asked us if we can construct a closed manifold \(M \) such that all the cup-products of elements of \(H^k(M) \) vanish, while the group \(H^{3k-1}(M; \mathbb{Q}) \) is generated by Massey products. Now we present such an example.

7. Lemma. Consider a wedge \(X \vee Y \) and three elements \(u, v, w \in H^*(X) \) such that \(uv = 0, uY = 0 = vY \) and \(wX = 0 \). Then all the Massey products \(\langle u, v, w \rangle \), \(\langle u, w, v \rangle \) and \(\langle w, u, v \rangle \) are trivial, i.e. they contain the zero element.

Proof. This follows from the following fact: If \(A \in C^*(X \vee Y) \) and \(B \in C^*(X \vee Y) \) are cochains with the supports in \(X \) and \(Y \), respectively, then their product is equal to zero. We leave the details to the reader. \(\square \)

Consider the wedge \(S^k_1 \vee S^k_2 \vee S^k_3 \vee S^k_4 \) of \(k \)-dimensional spheres, \(k > 1 \). Let \(\iota_m \in \pi_k(S^k_m) \) be the generator. Set

\[
(1) \quad Z = \left(\bigvee_{i=1}^{4} S^k_i \right) \cup f_{i1} e^{3k-1}
\]

where \(f_{i1} : S^{3k-2} \to \bigvee_{i=1}^{4} S^k_i \) represents the homotopy class \([\iota_1, [\iota_2, \iota_3]]\). Let \(\alpha_i \in H^k(Z) \) be the cohomology class that takes the value 1 on the cell \(S^k_i \) of \(Z \) and 0 on the other cells.

8. Corollary. If at least one of the indices \(i, j, k \) is equal to 4, then \(\langle \alpha_i, \alpha_j, \alpha_k \rangle = 0 \) in \(Z \).

Proof. This follows directly from Lemma 7 since

\[
Z = \left(\bigvee_{i=1}^{3} S^k_i \right) \cup f_{i1} e^{3k-1} \vee S^k_4.
\]

For convenience of notation, we set \(\iota_5 = \iota_1 \) and \(\iota_6 = \iota_2 \). Let \(f_m : S^{3k-2} \to \bigvee_{i=1}^{4} S^k_i \) be the map that represents \([\iota_m, [\iota_{m+1}, \iota_{m+2}]]\), \(m = 1, 2, 3, 4 \). Consider the map

\[
f : \bigvee_{i=1}^{4} S^{3k-2} \to \bigvee_{i=1}^{4} S^k_i
\]

such that \(f|S^{3k-2} = f_1 \), and set \(X = C_f\). We define \(\alpha_m \in H^k(X) \) to be the cohomology class that takes the value 1 on the cell \(S^k_i \) of \(X \) and 0 on the other cells. For convenience of notation, we set \(\alpha_5 = \alpha_1 \) and \(\alpha_6 = \alpha_2 \).
9. **Lemma.** The homology classes $\langle \alpha_m, \alpha_{m+1}, \alpha_{m+2} \rangle$ are linearly independent in $H^{3k-1}(X)$.

Proof. First, notice that all these Massey products are defined and have zero indeterminacies. Now, suppose that $\sum_{m=1}^{4} c_m \langle \alpha_m, \alpha_{m+1}, \alpha_{m+2} \rangle = 0$ for some $c_m \in \mathbb{R}$. Consider the space Z as in \[1\] and the obvious inclusion $j : Z \to X$. Then $j^* \langle \alpha_m, \alpha_{m+1}, \alpha_{m+2} \rangle = 0$ for $m = 2, 3, 4$ by Corollary \[5\] while $j^* \langle \alpha_1, \alpha_2, \alpha_3 \rangle \neq 0$ by Theorem \[3\]. Therefore $c_1 = 0$. Similarly, we can prove that $c_m = 0$ for all m. □

Now, because of Proposition \[1\] X can be regarded as a polyhedron in \mathbb{R}^N with $N \geq 4k$. Let W be a regular neighborhood of X in \mathbb{R}^N and set $M = \partial W$.

10. **Theorem.** If $N \neq 4k$, $5k - 1$, $6k - 2$, $6k - 1$, then $H^{3k-1}(M; \mathbb{Q})$ is generated by triple Massey products, while all the cup-products of elements of $H^k(M)$ vanish.

Proof. Consider the map

$$g : V \xrightarrow{i} W \xrightarrow{r} X$$

where i is the inclusion and r is a deformation retraction. Using the isomorphisms

$$H^i(W, M) \cong H_{N-i}(X) \quad \text{and} \quad H^i(W) \cong H^i(X),$$

and the exactness of the sequence

$$\begin{array}{ccc}
H^i(W, M) & \xrightarrow{j^*} & H^i(W) \\
\xrightarrow{i^*} & & \xrightarrow{r^*} \\
& & \Downarrow H^i(M)
\end{array}$$

we conclude that $H^{2k-1}(M) = 0$ and

$$g^* : H^{2k-1}(X) \to H^{3k-1}(M)$$

is an isomorphism. Now, the equality $H^{2k-1}(M) = 0$ implies that all the Massey products $\langle \alpha_i, \alpha_j, \alpha_k \rangle$ have zero indeterminacies. Furthermore, since g^* is an isomorphism, Lemma \[9\] implies that the g^*-images of the classes $\langle \alpha_m, \alpha_{m+1}, \alpha_{m+2} \rangle$, $m = 1, 2, 3, 4$, in M form a basis of $H^{3k-1}(M; \mathbb{Q})$. Finally, the map $i^* : H^k(W) \to H^k(M)$ is surjective for $N \neq 4k$, and so the cup-products of elements of $H^k(M)$ vanish. □

Acknowledgment

The first author was partially supported by NSF, grant 0305152. The second author was partially supported by MCyT, project BFM 2002-00788, Spain.

References

Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, Florida 32611-8105

E-mail address: dranish@math.ufl.edu

Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, Florida 32611-8105

E-mail address: rudyak@math.ufl.edu