Multipliers of weighted spaces and reflexivity property
HTML articles powered by AMS MathViewer
- by Xavier Dussau
- Proc. Amer. Math. Soc. 133 (2005), 1379-1386
- DOI: https://doi.org/10.1090/S0002-9939-04-07640-3
- Published electronically: October 18, 2004
- PDF | Request permission
Abstract:
We prove for some translation-invariant weighted spaces $E$ the following characterization: $T$ is a multiplier of $E$ if and only if $T$ leaves invariant every translation-invariant subspace of $E$. This result is equivalent with the reflexivity of the multiplier algebra of $E$.References
- Aharon Atzmon, The existence of translation invariant subspaces of symmetric self-adjoint sequence spaces on $\textbf {Z}$, J. Funct. Anal. 178 (2000), no. 2, 372–380. MR 1802899, DOI 10.1006/jfan.2000.3660
- Isabelle Chalendar and Jean Esterle, Le problème du sous-espace invariant, Development of mathematics 1950–2000, Birkhäuser, Basel, 2000, pp. 235–267 (French). MR 1796843
- B. Chevreau, A survey of recent reflexivity results, Operator algebras and operator theory (Craiova, 1989) Pitman Res. Notes Math. Ser., vol. 271, Longman Sci. Tech., Harlow, 1992, pp. 46–61. MR 1189165
- Yngve Domar, Translation invariant subspaces of weighted $l^{p}$ and $L^{p}$ spaces, Math. Scand. 49 (1981), no. 1, 133–144. MR 645094, DOI 10.7146/math.scand.a-11926
- Xavier Dussau, Les shifts à poids dissymétriques sont hyper-réflexifs, Bull. Soc. Math. France 130 (2002), no. 4, 573–585 (French, with English and French summaries). MR 1947453, DOI 10.24033/bsmf.2430
- Xavier Dussau, Les shifts à poids de croissance polynomiale sont hyper-réflexifs, Arch. Math. (Basel) 80 (2003), no. 1, 71–78 (French, with English and French summaries). MR 1968289, DOI 10.1007/s000130300007
- Jean Esterle, Singular inner functions and biinvariant subspaces for dissymmetric weighted shifts, J. Funct. Anal. 144 (1997), no. 1, 64–104. MR 1430716, DOI 10.1006/jfan.1996.2996
- Jean Esterle, Apostol’s bilateral weighted shifts are hyper-reflexive, Recent advances in operator theory and related topics (Szeged, 1999) Oper. Theory Adv. Appl., vol. 127, Birkhäuser, Basel, 2001, pp. 243–266. MR 1902804
- V. V. Kapustin, Reflexivity of operators: general methods and a criterion for almost isometric contractions, Algebra i Analiz 4 (1992), no. 2, 141–160 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 4 (1993), no. 2, 319–335. MR 1182398
- Ronald Larsen, The multiplier problem, Lecture Notes in Mathematics, Vol. 105, Springer-Verlag, Berlin-New York, 1969. MR 0435737, DOI 10.1007/BFb0059711
- D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511–517.
- Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. MR 0361899
- Béla Sz.-Nagy and Ciprian Foiaş, Analyse harmonique des opérateurs de l’espace de Hilbert, Masson et Cie, Paris; Akadémiai Kiadó, Budapest, 1967 (French). MR 0225183
- U. B. Tewari, The multiplier problem, Math. Student 65 (1996), no. 1-4, 45–56. MR 1618307
Bibliographic Information
- Xavier Dussau
- Affiliation: Laboratoire de Mathématiques Pures, Université Bordeaux I, 351, cours de la libération, 33405 Talence Cedex, France
- Email: dussau@math.u-bordeaux.fr
- Received by editor(s): October 15, 2003
- Received by editor(s) in revised form: January 2, 2004
- Published electronically: October 18, 2004
- Communicated by: Joseph A. Ball
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1379-1386
- MSC (2000): Primary 47A15, 43A22; Secondary 46E25, 20C20
- DOI: https://doi.org/10.1090/S0002-9939-04-07640-3
- MathSciNet review: 2111962