Duals and envelopes of some Hardy-Lorentz spaces
HTML articles powered by AMS MathViewer
- by Marc Lengfield
- Proc. Amer. Math. Soc. 133 (2005), 1401-1409
- DOI: https://doi.org/10.1090/S0002-9939-04-07656-7
- Published electronically: October 18, 2004
- PDF | Request permission
Abstract:
For $0<p<1$ we describe the dual spaces and Banach envelopes of the spaces $H^{p,q}$ for finite values of $q$ and for $H_{0}^{p,\infty }$, the closure of the polynomials in $H^{p,\infty }$. In addition, we determine the $s$-Banach envelopes for the spaces $H^{p,q}$ in the cases $0<q<p<s\leq 1$ and $0<q<p\leq s\leq 1$.References
- A. B. Aleksandrov, Essays on nonlocally convex Hardy classes, Complex analysis and spectral theory (Leningrad, 1979/1980) Lecture Notes in Math., vol. 864, Springer, Berlin-New York, 1981, pp. 1–89. MR 643380
- R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^{p}$, Representation theorems for Hardy spaces, Astérisque, vol. 77, Soc. Math. France, Paris, 1980, pp. 11–66. MR 604369
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on $H^{p}$ spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), 32–60. MR 259579
- Joaquín M. Ortega and Joan Fàbrega, Mixed-norm spaces and interpolation, Studia Math. 109 (1994), no. 3, 233–254. MR 1274011
- G.H. Hardy and J.E. Littlewood, Some properties of fractional integrals, II, Math. Z. 34 (1932), 403-439.
- Peter W. Jones, $L^{\infty }$ estimates for the $\bar \partial$ problem in a half-plane, Acta Math. 150 (1983), no. 1-2, 137–152. MR 697611, DOI 10.1007/BF02392970
- N. J. Kalton, Linear operators on $L_{p}$ for $0<p<1$, Trans. Amer. Math. Soc. 259 (1980), no. 2, 319–355. MR 567084, DOI 10.1090/S0002-9947-1980-0567084-3
- Ji Huai Shi, On the rate of growth of the means $M_p$ of holomorphic and pluriharmonic functions on bounded symmetric domains of $\textbf {C}^n$, J. Math. Anal. Appl. 126 (1987), no. 1, 161–175. MR 900536, DOI 10.1016/0022-247X(87)90083-7
Bibliographic Information
- Marc Lengfield
- Affiliation: Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510
- Address at time of publication: Department of Mathematics, Western Kentucky University, Bowling Green, Kentucky 42101
- Email: mlang@math.fsu.edu, marc.lengfield@wku.edu
- Received by editor(s): April 1, 2003
- Received by editor(s) in revised form: January 7, 2004
- Published electronically: October 18, 2004
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1401-1409
- MSC (2000): Primary 32A35
- DOI: https://doi.org/10.1090/S0002-9939-04-07656-7
- MathSciNet review: 2111965