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Abstract. This paper shows that some characterizations of minimally thin
sets connected with a domain having smooth boundary and a half-space in
particular can also be given for a minimally thin set at infinity of a cylinder.

1. Introduction

We denote by Rn (n ≥ 2) the n-dimensional Euclidean space. A point in Rn

is denoted by P = (X, y), X = (x1, x2, . . . , xn−1). The Euclidean distance of two
points P and Q in Rn is denoted by |P −Q|. Also |P −O| with the origin O of Rn

is simply denoted by |P |. The boundary of a set S in Rn is denoted by ∂S. The
half-space

{(X, y) ∈ Rn; y > 0}
will be denoted by Tn.

As an extension of a result of Beurling [5, Lemma 1], Dahlberg proved

Theorem 1.1 (Dahlberg [8, Theorem 4]). Suppose that E ⊂ Tn is measurable and
that ∫

E

dP

(1 + |P |)n
= ∞.

If u is a non-negative superharmonic function in Tn and m is a positive number
such that u(P ) ≥ my for all P = (X, y) ∈ E, then u(P ) ≥ my for all P = (X, y) ∈
Tn.

Sjögren also gave Theorem 1.1 in the following form with an ingenious proof of
Dahlberg’s result.

Theorem 1.2 (Sjögren [16, Theorem 2]). Let u(P ) be a positive superharmonic
function on Tn such that

u(P ) =
∫
Tn

G(P,Q)dµ(Q) +
∫

∂Tn

Π(P,Q)dλ(Q)
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with non-negative measures µ and λ on Tn and ∂Tn, respectively, where G(P,Q)
(P,Q ∈ Tn) and

Π(P,Q) = y|P −Q|−n (P = (X, y) ∈ Tn, Q ∈ ∂Tn)

are the Green function and the Poisson kernel for Tn, respectively. Then∫
Eu

dP

(1 + |P |)n
<∞,

where

Eu = {P = (X, y) ∈ Tn;u(P ) > y}.
Let K(P,Q) (P ∈ Tn, Q ∈ ∂Tn) be the Martin function with the reference point

(0, 0, . . . , 0, 1) ∈ Tn. Then K(P,∞) = y for any P = (X, y) ∈ Tn. A subset E
of Tn is said to be minimally thin at ∞ with respect to Tn if there exists a point
P = (X, y) ∈ Tn such that

R̂E
K(·,∞)(P ) �= y,

where R̂E
K(·,∞) is the regularized reduced function of K(P,∞) = y (P = (X, y) ∈

Tn) relative to E (Helms [12, p.134]).
We remark that the conclusion of Theorem 1.1 is equivalent to the fact that E

is not minimally thin at ∞ and Eu in Theorem 1.2 is minimally thin at ∞. Hence
Theorems 1.1 and 1.2 say

Theorem 1.3. If E ⊂ Tn is measurable and minimally thin at ∞ with respect to
Tn, then ∫

E

dP

(1 + |P |)n
<∞.(1.1)

The following Theorem 1.4 shows that (1.1) characterizes the minimal thinness
of E in a special case.

Theorem 1.4. Let E be a union of Whitney cubes of Tn. Then (1.1) is also
sufficient for E to be minimally thin at ∞ with respect to Tn.

These Theorems 1.1, 1.2, 1.3 and 1.4 follow from the results of Dahlberg [8,
Theorem 2], Sjögren [16, Theorem 2], Aikawa [1, Corollary 7 and Corollary 8],
Aikawa and Essén [2, Corollary 7.4.6 on p.158], which are all connected with a
Liapunov-Dini domain in Rn, because Tn is mapped onto a ball by a suitable
Kelvin transformation. All these results are connected to a boundary point of do-
mains with smooth boundary. So we can ask what are the results similar to these
results with respect to a corner or a cusp of a bounded domain. If we map a cone or
a cylinder into a bounded domain by a Kelvin transformation, the infinite boundary
points ∞ of a cone and +∞ of a cylinder are mapped to a corner and a cusp of a
bounded domain, respectively. In [15], with respect to ∞ of a cone we generalized
Theorems 1.1, 1.2, 1.3 and 1.4. In this paper, with respect to +∞ of a cylinder, we
shall show that the same type of theorems as Theorems 1.3 and 1.4 are still true.
Then we shall also give the same type of theorems as Theorems 1.1 and 1.2 for a
positive superharmonic functions on a cylinder.



BEURLING-DAHLBERG-SJÖGREN TYPE THEOREMS 1393

2. Preliminaries

Let D be a domain on Rn−1 (n ≥ 2) with smooth boundary. Consider the
Dirichlet problem

(∆n + τ)f = 0 on D,(2.1)
f = 0 on ∂D.

We denote the least positive eigenvalue of (2.1) by τD and the normalized positive
eigenfunction corresponding to τD by fD(X);∫

D

f2
D(X)dX = 1,

where dX is the (n− 1)-dimensional volume element.
To simplify our consideration in the following, we shall assume that if n ≥ 3,

then D is a C2,α-domain (0 < α < 1) on Rn−1 surrounded by a finite number
of mutually disjoint closed hypersurfaces (e.g. see Gilbarg and Trudinger [11, pp.
88-89] for the definition of a C2,α-domain).

By Γn(D), we denote the set

{(X, y) ∈ Rn;X ∈ D,−∞ < y < +∞},
which is usually called a cylinder. It is known that the Martin boundary of Γn(D) is
the set ∂Γn(D)∪{+∞,−∞}. When we denote the Martin kernel by K(P,Q) (P ∈
Γn(D), Q ∈ ∂Γn(D) ∪ {+∞,−∞}), we know

K(P,+∞) = e
√

τDyfD(X), K(P,−∞) = κe−
√

τDyfD(X) (P = (X, y) ∈ Γn(D)),

where κ is a positive constant.
A subset E of Γn(D) is said to be minimally thin at +∞ with respect to Γn(D)

(Brelot [6, p.122], Doob [9, p.208]) if there exists a point P ∈ Γn(D) such that

R̂E
K(·,+∞)(P ) �= K(P,+∞),

where R̂E
K(·,+∞)(P ) is the regularized reduced function of K(·,+∞) relative to

E (Helms [12, p.134]). As far as we are concerned with minimal thinness in the
following, we shall restrict a subset E of Γn(D) to the set located in the half cylinder

Γn(D, 0,+∞) = {(X, y) ∈ Rn;X ∈ D, 0 < y < +∞},
because the part of E separated from +∞ is unessential to minimal thinness.

Let E be a bounded subset of Γn(D, 0,+∞). Then R̂E
K(·,+∞) is bounded on

Γn(D), and hence the greatest harmonic minorant of R̂E
K(·,+∞) is zero. When we

denote by G(P,Q) (P ∈ Γn(D), Q ∈ Γn(D)) the Green function of Γn(D), we see
from the Riesz decomposition theorem that there exists a unique positive measure
λE on Γn(D) such that

R̂E
K(·,+∞)(P ) = GλE(P )

for any P ∈ Γn(D) and λE is concentrated on BE , where

BE = {P ∈ Γn(D);E is not thin at P}
(see Brelot [6, Theorem VIII, 11] and Doob [9, XI. 14. Theorem (d)]). The (Green)
energy γD(E) of λE is defined by

γD(E) =
∫

Γn(D)

(GλE)dλE
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(see Helms [12, p.223]). Let E be a Borel subset of Γn(D) and Ek = E∩Ik(D) (k =
0, 1, 2, . . . ), where

Ik(D) = {(X, y) ∈ Γn(D); k ≤ y < k + 1}.
This paper is essentially based on the following Theorem 2.1 (Miyamoto [14,

Theorem 1]), which gives not only a criterion of Wiener type ((II) of Theorem
2.1), but also another definition for a minimally thin set at +∞ with respect to
Γn(D) ((III) of Theorem 2.1).

Theorem 2.1. For a subset E of Γn(D), the following statements are equivalent:
(I) E is minimally thin at +∞ with respect to Γn(D).

(II)
∞∑

k=0

γ(Ek)e−2
√

τDk <∞.

(III) There exists a positive superharmonic function v(P ) on Γn(D) such that

inf
P∈Γn(D)

v(P )
K(P,+∞)

= 0

and
E ⊂Mv,

where
Mv = {P ∈ Γn(D); v(P ) ≥ K(P,+∞)}.

3. Statements of results

We denote by |E| the n-dimensional Lebesgue measure of E. The following
Theorem 3.1 is the main theorem in this paper.

Theorem 3.1. Let a Borel subset E of Γn(D) be minimally thin at +∞ with respect
to Γn(D). Then we have

|E| <∞.(3.1)

To give the following Theorem 3.2, which shows that (3.1) characterizes the
minimal thinness in the special case of E, we introduce the Whitney cubes of
Γn(D).

A cube is of the form

[l12−k, (l1 + 1)2−k] × · · · × [ln2−k, (ln + 1)2−k]

where k, l1, . . . , ln are integers. When we denote by M(Γn(D)) the family of all
cubes in Γn(D), the Whitney cubes of Γn(D) form a family of cubes Wj from
M(Γn(D)) having the following properties:

(i)
⋃

j Wj = Γn(D),
(ii) int Wj ∩ int Wk = ∅ (j �= k),
(iii) diam Wj ≤ dist (Wj ,Rn \ Γn(D)) ≤ 4 diam Wj ,

where int S, diam S, dist (S1, S2) stand for the interior of S, the diameter of S,
the distance between S1 and S2, respectively (Stein [17, p.167, Theorem 1]).

Theorem 3.2. If E is a union of Whitney cubes of Γn(D), then (3.1) is also
sufficient for E to be minimally thin at +∞ with respect to Γn(D).

From Theorem 3.1, we obtain the following Theorems 3.3 and 3.4, which are
similar to Theorems 1.1 and 1.2.
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Theorem 3.3. Let E be a Borel measurable subset of Γn(D) satisfying

|E| = ∞.

If v(P ) is a non-negative superharmonic function on Γn(D) and m is a positive
number such that v(P ) ≥ mK(P,+∞) for all P ∈ E, then v(P ) ≥ mK(P,+∞) for
all P ∈ Γn(D).

Theorem 3.4. Let v(P ) be a positive superharmonic function on Γn(D) such that

inf
P∈Γn(D)

v(P )
K(P,+∞)

= 0.

Then we have
|Mv ∩ Γn(D; 0,+∞)| <∞.

4. Lemmas and their proofs

For a function F (P,Q) for any P,Q ∈ Γn(D) and a positive measure µ on Γn(D),∫
Γn(D)

F (P,Q)dµ(Q)

is simply denoted by Fµ(P ). We shall also write g1 ≈ g2 for two positive functions
g1 and g2 if and only if there exists a positive constant a such that a−1g1 ≤ g2 ≤ ag1.

Let E be a Borel subset of Γn(D), and let δ(P ) = dist(P, ∂Γn(D)) for a point
P ∈ Γn(D). We define a measure σD on Γn(D) by

σD(E) =
∫

E

(
K(P,+∞)
δ(P )

)2

dP.

Lemma 4.1. Let E be a bounded Borel subset of Γn(D). Then there exists a
constant M1 independent of E such that

σD(E) ≤M1γD(E).

Proof. First of all, we remark that the set Rn \ Γn(D) is (1, 2) uniformly fat, i.e.
there is a positive constant ι such that at any P ∈ Rn \ Γn(D),

Cap ({P + r−1(Q− P ) ∈ Rn;Q ∈ B(P, r) ∩ (Rn \ Γn(D))}) ≥ ι

for every positive number r, where B(P, r) = {Q ∈ Rn : |Q − P | < r} and Cap
denotes the Newtonian capacity (see Lewis [13, p.178]). Then by a result of Lewis
[13, Theorem 2], there is a positive constant M1 depending only on ι and n such
that ∫

Γn(D)

∣∣∣∣ψ(P )
δ(P )

∣∣∣∣
2

dP ≤M1

∫
Γn(D)

|∇ψ(P )|2 dP(4.1)

for every ψ ∈ C∞
0 (Γn(D)).

We denote the function GλE(P ) = R̂E
K(·,+∞)(P ) on Γn(D) by vE(P ). It is well

known that the Green energy can be represented as the Dirichlet integral, i.e.

γD(E) =
∫

Γn(D)

|∇vE |2dP.(4.2)

Since

A−1e
√

τDye−
√

τDy′
fD(X)fD(X ′) ≤ G(P,Q) ≤ Ae

√
τDye−

√
τDy′

fD(X)fD(X ′)
(4.3)



1396 IKUKO MIYAMOTO AND MINORU YANAGISHITA

for any P = (X, y) ∈ Γn(D) and Q = (X ′, y′) ∈ Γn(D) satisfying y < y′ − 1, where
A is a positive constant (see Yoshida [18]) and

fD(X) ≈ δ(P )(4.4)

for any P = (X, y) ∈ Γn(D) (see Courant and Hilbert [7]), we also have∫
Γn(D)

∣∣∣∣vE(P )
δ(P )

∣∣∣∣
2

dP <∞.(4.5)

Hence we have vE ∈ H(Γn(D)) from (4.2) and (4.5), where

H(Γn(D)) = {f ∈ L2
loc(Γn(D)) : ∇f ∈ L2(Γn(D)), δ−1f ∈ L2(Γn(D))}

equipped with the norm

‖f‖H(Γn(D)) =
(
‖∇f‖2

L2(Γn(D)) + ‖δ−1f‖2
L2(Γn(D))

) 1
2
,

and furthermore, vE ∈ H0(Γn(D)), where H0(Γn(D)) denotes the closure of
C∞

0 (Γn(D)) in H(Γn(D)). Thus we obtain from (4.1) that∫
Γn(D)

∣∣∣∣vE(P )
δ(P )

∣∣∣∣
2

dP ≤M1

∫
Γn(D)

|∇vE(P )|2 dP

(see Ancona [3, p.288]). Since vE = K(·,+∞) quasi everywhere on E and hence
a.e. on E, we have from (4.2),

γD(E) ≥M−1
1

∫
Γn(D)

(
vE(P )
δ(P )

)2

dP ≥M−1
1

∫
E

(
K(P,+∞)
δ(P )

)2

dP = M−1
1 σD(E),

which gives the conclusion.

Lemma 4.2. Let Wj be any cube from the Whitney cubes of Γn(D). Then there
exists a constant M2 independent of j such that

γD(Wj) ≤M2σD(Wj).

Proof. If we apply a standard result (cf. e.g. Theorem 5.6, p. 19 in Aikawa and
Essén [2]) to a compact set W j , we obtain a measure µ on Γn(D), supp µ ⊂ W j ,
µ(W j) = 1 such that



∫
Γn(D)

|P −Q|2−ndµ(Q) = {Cap(W j)}−1 (n ≥ 3),∫
Γ2(D)

log |P −Q|dµ(Q) = log Cap(W j) (n = 2),
(4.6)

for any P ∈ W j . Also there exists a positive measure λW j
on Γn(D) such that

R̂
W j

K(·,+∞)(P ) = GλW j
(P ) (P ∈ Γn(D)).(4.7)

Let Pj = (Xj , yj), ρj , tj be the center of Wj , the diameter of Wj , the distance
between Wj and ∂Γn(D), respectively. Then we have ρj ≤ tj ≤ 4ρj . For each Wj

there exists an integer kj such that the side-length of Wj is 2−kj . We can take an
integer mD such that mD = minj kj . So for any Q = (X, y) ∈W j we have

yj − 2−mD−1 ≤ y ≤ yj + 2−mD−1.
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Then from (4.4) we can find a positive constant A1 independent of j such that

K(P,+∞) ≤ A1e
√

τDyjρj(4.8)

for any P ∈ W j . We can also prove that

G(P,Q) ≥
{

A2|P −Q|2−n (n ≥ 3),
log A3ρj

|P−Q| (n = 2),(4.9)

for any P ∈ W j and Q ∈ W j , where A2 and A3 are two positive constants inde-
pendent of j. Hence we obtain

λW j
(Γn(D)) ≤

{
(A1/A2)e

√
τDyjρjCap(W j) (n ≥ 3),

A1e
√

τDyjρj

{
log A3ρj

Cap(W j)

}−1

(n = 2)

(4.10)

from (4.6), (4.7), (4.8) and (4.9). Since

γD(W j) =
∫
GλW j

dλW j
≤
∫

W j

K(P,∞)dλW j
(P ) ≤ A1e

√
τDyjρjλW j

(Γn(D))

from (4.7) and (4.8), we have from (4.10),

γD(W j) ≤
{
A2

1A
−1
2 e2

√
τDyjρ2

jCap(W j) (n ≥ 3),

A2
1e

2
√

τDyjρ2
j

{
log A3ρj

Cap(W j)

}−1

(n = 2).
(4.11)

Since {
Cap(W j) ≈ ρn−2

j (n ≥ 3),
Cap(W j) ≈ ρj (n = 2),

we obtain from (4.11)

γD(Wj) ≤ A4e
2
√

τDyjρn
j(4.12)

with a positive constant A4. On the other hand, we have from (4.4) that

σD(Wj) ≈ e2
√

τDyjρn
j(4.13)

for any P = (X, y) ∈Wj . From (4.12) and (4.13) we finally have

γD(Wj) ≤M2σD(Wj),

which is the conclusion of Lemma 2.

5. Proofs of theorems

Proof of Theorem 3.1. First of all we remark that

|E| =
∞∑

k=0

|Ek|.(5.1)

We have from (4.4),
A5δ(P ) ≤ fD(X),

for any P = (X, y) ∈ Γn(D), where A5 is a positive constant. Hence

σ(Ek) =
∫

Ek

(
K(P,+∞)
δ(P )

)2

dP ≥ A2
5

∫
Ek

(
e
√

τDyfD(X)
fD(X)

)2

dP

= A2
5

∫
Ek

e2
√

τDydP ≥ A2
5e

2
√

τDk|Ek|.
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By using Lemma 4.1, we obtain

γD(Ek) ≥M−1
1 σD(Ek) ≥ A6e

2
√

τDk|Ek|,(5.2)

where A6 is a positive constant.
If E is minimally thin at +∞ with respect to Γn(D), then by Theorem 2.1, (5.1)

and (5.2), we have

|E| ≤ |A−1
6

∞∑
k=0

γD(Ek)e−2
√

τDk| <∞,

which is the conclusion of Theorem 3.1.

Proof of Theorem 3.2. Let {Wj} be a family of Whitney cubes of Γn(D) such
that E =

⋃
j Wj , and let {Wk,i} be a subfamily of {Wj} such that Wk,i ⊂

(Ek−1 ∪ Ek ∪ Ek+1) (k = 1, 2, . . . ).
Since γD is a countably subadditive set function (Essén and Jackson [10, Lemma

2.1]), we have

γD(Ek) ≤
∑

i

γD(Wk,i) (k = 1, 2, . . . ).(5.3)

Hence we see from Lemma 4.2,∑
i

γD(Wk,i) ≤M2

∑
i

σD(Wk,i) (k = 1, 2, . . . ).(5.4)

Since we see from (4.4) that

fD(X) ≤ A7δ(P )

for any P = (X, y) ∈ Γn(D), where A7 is a positive constant, we have

∑
i

σD(Wk,i) ≤ A2
7

(∫
Ek−1

e2
√

τDydP +
∫

Ek

e2
√

τDydP +
∫

Ek+1

e2
√

τDydP

)
(5.5)

≤ A2
7e

2
√

τDk
(
|Ek−1| + e2

√
τD |Ek| + e4

√
τD |Ek+1|

)
(k = 1, 2, . . . ).

Thus (5.3), (5.4) and (5.5) give

γD(Ek) ≤M2 · A2
7e

2
√

τDk
(
|Ek−1| + e2

√
τD |Ek| + e4

√
τD |Ek+1|

)
(k = 1, 2, . . . ).

Finally we obtain
∞∑

k=1

γD(Ek)e−2
√

τDk ≤M2A
2
7

∞∑
k=1

(
|Ek−1| + e2

√
τD |Ek| + e4

√
τD |Ek+1|

)
≤ A8|E| <∞,

where A8 is a positive constant, which shows from Theorem 2.1 that E is minimally
thin at +∞ with respect to Γn(D).

Proof of Theorem 3.3. Let E be a Borel measurable subset of Γn(D), v(P ) be a
positive superharmonic function on Γn(D) and m be a positive number such that
v(P ) ≥ mK(P,+∞) (P ∈ E). We shall prove that if there exists P0 ∈ Γn(D)
satisfying v(P0) < mK(P0,+∞), then |E| <∞.

If we put

inf
P∈Γn(D)

v(P )
K(P,+∞)

= c∞(v)
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and
u(P ) = v(P ) − c∞(v)K(P,+∞),

then we have

inf
P∈Γn(D)

u(P )
K(P,+∞)

= 0.

Since v(P0) < mK(P0,+∞), we note that

c∞(u) < m.

Now we obtain

u(P ) ≥ mK(P,+∞) − c∞(v)K(P,+∞)
= (m− c∞(v))K(P,+∞)

for any P ∈ E. Hence by Theorem 2.1, E is minimally thin at +∞ with respect to
Γn(D). Therefore from Theorem 3.1 we have |E| <∞.

Proof of Theorem 3.4. We use Theorem 2.1 in the case where a set E in (III) is
Mv ∩Γn(D; 0,+∞). Then we see that Mv ∩Γn(D; 0,+∞) is minimally thin at +∞
with respect to Γn(D). Hence by Theorem 3.1 we easily have the conclusion.
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