Some characterizations of minimally thin sets in a cylinder and Beurling-Dahlberg-Sjögren type theorems
HTML articles powered by AMS MathViewer
- by Ikuko Miyamoto and Minoru Yanagishita
- Proc. Amer. Math. Soc. 133 (2005), 1391-1400
- DOI: https://doi.org/10.1090/S0002-9939-04-07660-9
- Published electronically: October 18, 2004
- PDF | Request permission
Abstract:
This paper shows that some characterizations of minimally thin sets connected with a domain having smooth boundary and a half-space in particular can also be given for a minimally thin set at infinity of a cylinder.References
- Hiroaki Aikawa, Quasiadditivity of Riesz capacity, Math. Scand. 69 (1991), no. 1, 15–30. MR 1143471, DOI 10.7146/math.scand.a-12366
- Hiroaki Aikawa and Matts Essén, Potential theory—selected topics, Lecture Notes in Mathematics, vol. 1633, Springer-Verlag, Berlin, 1996. MR 1439503, DOI 10.1007/BFb0093410
- Alano Ancona, On strong barriers and an inequality of Hardy for domains in $\textbf {R}^n$, J. London Math. Soc. (2) 34 (1986), no. 2, 274–290. MR 856511, DOI 10.1112/jlms/s2-34.2.274
- V. S. Azarin, Generalization of a theorem of Hayman’s on a subharmonic function in an $n$-dimensional cone, Mat. Sb. (N.S.) 66 (108) (1965), 248–264 (Russian). MR 0176091
- Arne Beurling, A minimum principle for positive harmonic functions, Ann. Acad. Sci. Fenn. Ser. A I 372 (1965), 7. MR 0188466
- Marcel Brelot, On topologies and boundaries in potential theory, Lecture Notes in Mathematics, Vol. 175, Springer-Verlag, Berlin-New York, 1971. Enlarged edition of a course of lectures delivered in 1966. MR 0281940, DOI 10.1007/BFb0060353
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- Björn Dahlberg, A minimum principle for positive harmonic functions, Proc. London Math. Soc. (3) 33 (1976), no. 2, 238–250. MR 409847, DOI 10.1112/plms/s3-33.2.238
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5
- Matts Essén and Howard L. Jackson, On the covering properties of certain exceptional sets in a half-space, Hiroshima Math. J. 10 (1980), no. 2, 233–262. MR 577853
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443, DOI 10.1007/978-3-642-96379-7
- L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1969. MR 0261018
- John L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), no. 1, 177–196. MR 946438, DOI 10.1090/S0002-9947-1988-0946438-4
- I. Miyamoto, Two criteria of Wiener type for minimally thin sets and rarefied sets in a cylinder, preprint.
- Ikuko Miyamoto, Minoru Yanagishita, and Hidenobu Yoshida, Beurling-Dahlberg-Sjögren type theorems for minimally thin sets in a cone, Canad. Math. Bull. 46 (2003), no. 2, 252–264. MR 1981679, DOI 10.4153/CMB-2003-025-5
- Peter Sjögren, Une propriété des fonctions harmoniques positives, d’après Dahlberg, Séminaire de Théorie du Potentiel de Paris, No. 2 (Univ. Paris, Paris, 1975–1976) Lecture Notes in Math., Vol. 563, Springer, Berlin, 1976, pp. 275–282 (French). MR 0588344
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- H. Yoshida, Nevanlinna norm of a subharmonic function on a cone or on a cylinder, Proc. London Math. Soc. (3) 54 (1987), no. 2, 267–299. MR 872808, DOI 10.1112/plms/s3-54.2.267
Bibliographic Information
- Ikuko Miyamoto
- Affiliation: Department of Mathematics and Informatics, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Email: miyamoto@math.s.chiba-u.ac.jp
- Minoru Yanagishita
- Affiliation: Department of Mathematics and Informatics, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Email: myanagis@g.math.s.chiba-u.ac.jp
- Received by editor(s): February 28, 2003
- Received by editor(s) in revised form: January 6, 2004
- Published electronically: October 18, 2004
- Communicated by: Juha M. Heinonen
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 1391-1400
- MSC (2000): Primary 31B05; Secondary 31B20
- DOI: https://doi.org/10.1090/S0002-9939-04-07660-9
- MathSciNet review: 2111964
Dedicated: Dedicated to Professor Hidenobu Yoshida on his 60th birthday