Integrable factors in compact Schur multipliers
HTML articles powered by AMS MathViewer
- by Mats Erik Andersson
- Proc. Amer. Math. Soc. 133 (2005), 1469-1473
- DOI: https://doi.org/10.1090/S0002-9939-04-07670-1
- Published electronically: December 6, 2004
- PDF | Request permission
Abstract:
It is shown that a Schur multiplier is compact if and only if it is the Schur product of two multipliers, one of which is a Hankel–Schur multiplier generated by an integrable function. This is illuminated by factoring exotic, singular measures and is brought into relation with Paley set-based multipliers.References
- Mats Erik Andersson, Two special applications of Riesz products, Fourier analysis and related topics (Będlewo, 2000) Banach Center Publ., vol. 56, Polish Acad. Sci. Inst. Math., Warsaw, 2002, pp. 13–29. MR 1971560, DOI 10.4064/bc56-0-1
- G. Bennett, Schur multipliers, Duke Math. J. 44 (1977), no. 3, 603–639. MR 493490, DOI 10.1215/S0012-7094-77-04426-X
- Marek Bożejko, Littlewood functions, Hankel multipliers and power bounded operators on a Hilbert space, Colloq. Math. 51 (1987), 35–42. MR 891273, DOI 10.4064/cm-51-1-35-42
- John Fournier, Extensions of a Fourier multiplier theorem of Paley, Pacific J. Math. 30 (1969), 415–431. MR 257651, DOI 10.2140/pjm.1969.30.415
- Milan Hladnik, Compact Schur multipliers, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2585–2591. MR 1766604, DOI 10.1090/S0002-9939-00-05708-7
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- I. Klemes, Idempotent multipliers of $H^1(T)$, Canad. J. Math. 39 (1987), no. 5, 1223–1234. MR 918595, DOI 10.4153/CJM-1987-062-5
- Walter Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203–227. MR 0116177, DOI 10.1512/iumj.1960.9.59013
Bibliographic Information
- Mats Erik Andersson
- Affiliation: Bellmansgatan 118, SE-754 26 Uppsala, Sweden
- Email: mats@math.uu.se
- Received by editor(s): October 8, 2003
- Received by editor(s) in revised form: February 1, 2004
- Published electronically: December 6, 2004
- Communicated by: Joseph A. Ball
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1469-1473
- MSC (2000): Primary 47A68; Secondary 47B07, 42A38, 43A46
- DOI: https://doi.org/10.1090/S0002-9939-04-07670-1
- MathSciNet review: 2111947