On a conjecture of D. Styer regarding univalent geometric and annular starlike functions
HTML articles powered by AMS MathViewer
- by D. Bshouty and A. Lyzzaik
- Proc. Amer. Math. Soc. 133 (2005), 1485-1490
- DOI: https://doi.org/10.1090/S0002-9939-04-07674-9
- Published electronically: December 6, 2004
- PDF | Request permission
Abstract:
The aim of this paper is two-fold. First, to give a direct proof for the already established result of Styer which states that a univalent geometrically starlike function $f$ is a univalent annular starlike function if $f$ is bounded. Second, to show that the boundedness condition of $f$ is necessary, thus disproving a conjecture of Styer.References
- John Bender, Some extremal theorems for multivalently star-like functions, Duke Math. J. 29 (1962), 101–106. MR 132171
- A. W. Goodman and E. B. Saff, On univalent functions convex in one direction, Proc. Amer. Math. Soc. 73 (1979), no. 2, 183–187. MR 516461, DOI 10.1090/S0002-9939-1979-0516461-2
- W. Hengartner and G. Schober, A remark on level curves for domains convex in one direction, Applicable Anal. 3 (1973), 101–106. MR 393450, DOI 10.1080/00036817308839059
- J. A. Hummel, Multivalent starlike functions, J. Analyse Math. 18 (1967), 133–160. MR 209461, DOI 10.1007/BF02798041
- David Styer, Geometric and annular starlike functions, Complex Variables Theory Appl. 29 (1996), no. 2, 189–191. MR 1382965, DOI 10.1080/17476939608814885
- David Styer, An analytic characterization of geometrically starlike functions, Michigan Math. J. 23 (1976), no. 2, 137–139. MR 409792
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
Bibliographic Information
- D. Bshouty
- Affiliation: Department of Mathematics, Technion, Haifa 32000, Israel
- Email: daoud@tx.technion.ac.il
- A. Lyzzaik
- Affiliation: Department of Mathematics, American University of Beirut, Beirut, Lebanon
- MR Author ID: 117325
- Email: lyzzaik@aub.edu.lb
- Received by editor(s): September 30, 2003
- Received by editor(s) in revised form: February 4, 2004
- Published electronically: December 6, 2004
- Additional Notes: The first author thanks the Promotion of Research Fund at the Technion for its support.
- Communicated by: Juha M. Heinonen
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1485-1490
- MSC (2000): Primary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-04-07674-9
- MathSciNet review: 2111949