A counterexample to the existence of a local plurisubharmonic peak function at infinity
HTML articles powered by AMS MathViewer
- by Sung-Hee Park
- Proc. Amer. Math. Soc. 133 (2005), 1463-1467
- DOI: https://doi.org/10.1090/S0002-9939-04-07699-3
- Published electronically: December 6, 2004
- PDF | Request permission
Abstract:
We give an example of an unbounded pseudoconvex Reinhardt domain in $\mathbb {C}^n,\ n\ge 4$, which is Kobayashi complete but admits no local plurisubharmonic peak function at infinity.References
- Jisoo Byun, Hervé Gaussier, and Kang-Tae Kim, Weak-type normal families of holomorphic mappings in Banach spaces and characterization of the Hilbert ball by its automorphism group, J. Geom. Anal. 12 (2002), no. 4, 581–599. MR 1916860, DOI 10.1007/BF02930654
- Siqi Fu, On completeness of invariant metrics of Reinhardt domains, Arch. Math. (Basel) 63 (1994), no. 2, 166–172. MR 1289299, DOI 10.1007/BF01189891
- Hervé Gaussier, Tautness and complete hyperbolicity of domains in $\textbf {C}^n$, Proc. Amer. Math. Soc. 127 (1999), no. 1, 105–116. MR 1458872, DOI 10.1090/S0002-9939-99-04492-5
- Hervé Gaussier, Kang-Tae Kim, and Steven G. Krantz, A note on the Wong-Rosay theorem in complex manifolds, Complex Var. Theory Appl. 47 (2002), no. 9, 761–768. MR 1925173, DOI 10.1080/02781070290032225
- P. Jakóbczak and M. Jarnicki, Lectures on holomorphic functions of several complex variables, PS File at http://www.im.uj.edu.pl/$\thicksim$jarnicki/mjp.htm, 2001.
- Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR 1242120, DOI 10.1515/9783110870312
- Marek Jarnicki and Peter Pflug, Extension of holomorphic functions, De Gruyter Expositions in Mathematics, vol. 34, Walter de Gruyter & Co., Berlin, 2000. MR 1797263, DOI 10.1515/9783110809787
- Nikolai Nikolov, Localization of invariant metrics, Arch. Math. (Basel) 79 (2002), no. 1, 67–73. MR 1923040, DOI 10.1007/s00013-002-8286-1
- K. Oka, Sur les fonctions analytiques de plusieurs variables, II Domaines d’holomorphie, J. Sci. Hiroshima Univ., Ser. A 7 (1937), 115-130.
- S.-H. Park, On hyperbolicity and tautness of certain Hartogs type domains, preprint
- Vasiliĭ Sergeevič Vladimirov, Methods of the theory of functions of many complex variables, The M.I.T. Press, Cambridge, Mass.-London, 1966. Translated from the Russian by Scripta Technica, Inc; Translation edited by Leon Ehrenpreis. MR 0201669
- H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193–233. MR 224869, DOI 10.1007/BF02392083
- Włodzimierz Zwonek, On hyperbolicity of pseudoconvex Reinhardt domains, Arch. Math. (Basel) 72 (1999), no. 4, 304–314. MR 1678013, DOI 10.1007/s000130050337
Bibliographic Information
- Sung-Hee Park
- Affiliation: Department of Mathematics, Chonbuk National University, Chonju (Chonbuk), 560-756, Republic of Korea
- Email: wshpark@mail.chonbuk.ac.kr
- Received by editor(s): June 3, 2003
- Received by editor(s) in revised form: February 1, 2004
- Published electronically: December 6, 2004
- Communicated by: Mei-Chi Shaw
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1463-1467
- MSC (2000): Primary 32T40; Secondary 32F45
- DOI: https://doi.org/10.1090/S0002-9939-04-07699-3
- MathSciNet review: 2111946