S-INVARIANT SUBSPACES OF $L^p(T)$

D. A. REDETT

(Communicated by Joseph A. Ball)

Abstract. In this note, we give a new proof of the characterization of the S-invariant subspaces of $L^p(T)$ for p in $P = \{ p : 1 < p < \infty, p \neq 2 \}$ using ideas from approximation theory.

In this short note we give a new proof of the characterization of the S-invariant subspaces of $L^p(T) = L^p(T, m)$ for p in $P = \{ p : 1 < p < \infty, p \neq 2 \}$ where S denotes the operator of multiplication by the coordinate function. Here, T denotes the unit circle in the complex plane and m denotes Lebesgue measure on T normalized so that $m(T) = 1$. The proof is based on well-known facts from approximation theory.

Henceforth, any time we make reference to $L^p(T)$ (or $H^p(T)$) we assume p is in P. We point out first that $L^p(T)$ and all of the subspaces of $L^p(T)$ are uniformly convex Banach spaces. Hence we may employ the following result found in [5].

Lemma 1. Let \mathcal{X} be a uniformly convex Banach space and K a subspace of \mathcal{X}. Then for all x in \mathcal{X} there corresponds a unique y in K satisfying $\| x - y \| = \inf_{z \in K} \| x - z \|$. We call such a y the best approximate of x in K.

We say w is orthogonal to K and write $w \perp K$ if $\| w \| \leq \| w + k \|$ for all k in K. For K a subspace of $L^p(T)$, then $f \perp K$ if

$$\int_T g \left| f \right|^{p-1} \text{sgn} f \, dm = 0$$

for all g in K, where $\text{sgn} f$ is a complex measurable function of modulus 1 such that $f = \text{sgn} f |f|$. A proof of this can be found in [5].

If f is in $L^p(T)$ and f^* is the best approximate of f in K, then $g = f - f^*$ is orthogonal to K. This remark suggests the following lemma, which is a corollary of our first lemma.

Lemma 2. Let \mathcal{X} be a uniformly convex Banach space and K a subspace of \mathcal{X}. Then there exists an x in \mathcal{X} such that $x \perp K$. If K is a proper subspace, then x may be chosen such that $x \neq 0$.

We say an S-invariant subspace of $L^p(T)$ is S-simply invariant if $S(M)$ is a proper subspace of M. We also recall that $H^p(T) = \{ f \in L^p(T) : \int_T z^n f \, dm = 0 \forall n > 0 \}$.

Received by the editors November 17, 2003 and, in revised form, January 23, 2004.

2000 Mathematics Subject Classification. Primary 47A15; Secondary 46E30.
Theorem 1. \mathcal{M} is an S-simply invariant subspace of $L^p(\mathbf{T})$ if and only if $\mathcal{M} = \phi H^p(\mathbf{T})$ with ϕ unimodular.

Proof. If $\mathcal{M} = \phi H^p(\mathbf{T})$ with ϕ unimodular, then it is clear that \mathcal{M} is an S-simply invariant subspace of $L^p(\mathbf{T})$. It remains to show the converse. Since $S(\mathcal{M})$ is a proper subspace of \mathcal{M} by Lemma 2, there exists a nonzero ϕ in \mathcal{M} such that $\phi \perp S(\mathcal{M})$. There is no loss of generality if we choose ϕ such that $\|\phi\|_p = 1$. So in particular, $\phi \perp z^n\phi$ for all $n > 0$. That is,

$$\int_{\mathbf{T}} z^n|\phi|^p \, dm = 0$$

for all $n > 0$. Taking complex conjugates we get

$$\int_{\mathbf{T}} z^n|\phi|^p \, dm = 0$$

for all $n \neq 0$. So, $|\phi| = 1$ a.e. on \mathbf{T}. That is, ϕ is unimodular. Since ϕ is in \mathcal{M}, so is $z^n\phi$ for all $n \geq 0$. Therefore, ϕP is in \mathcal{M} for every polynomial P. Since polynomials are dense in $H^p(\mathbf{T})$ and $|\phi| = 1$ we get that $\phi H^p(\mathbf{T}) \subseteq \mathcal{M}$. It remains to show that $\phi H^p(\mathbf{T})$ is all of \mathcal{M}. Let ψ be an element of \mathcal{M} orthogonal to $\phi H^p(\mathbf{T})$. Since ϕ is unimodular, we get that $\psi\overline{\phi}$ is in $L^p(\mathbf{T})$. By the way we chose ϕ we get that $\phi \perp z^n\psi$ for all $n > 0$. That is,

$$\int_{\mathbf{T}} z^n\psi\overline{\phi} \, dm = 0$$

for all $n > 0$. These two facts together give us that $\psi\overline{\phi}$ is in $H^p(\mathbf{T})$. That is, ψ is in $\phi H^p(\mathbf{T})$. This can only happen if $\psi = 0$. Therefore, $\mathcal{M} = \phi H^p(\mathbf{T})$ as desired. \qed

Corollary 1. \mathcal{M} is an S-invariant subspace of $H^p(\mathbf{T})$ if and only if $\mathcal{M} = \phi H^p(\mathbf{T})$ with ϕ inner.

This is easy to see since every S-invariant subspace of $H^p(\mathbf{T})$ is S-simply invariant and since unimodular plus analytic implies inner.

We say an S-invariant subspace of $L^p(\mathbf{T})$ is S-doubly invariant if it is S-invariant but not S-simply invariant. That is, $S(\mathcal{M}) = \mathcal{M}$. So in particular, \mathcal{M} is invariant under both S and S^{-1}.

Theorem 2. \mathcal{M} is an S-doubly invariant subspace of $L^p(\mathbf{T})$ if and only if $\mathcal{M} = 1_E L^p(\mathbf{T})$ where E is a measurable subset of \mathbf{T}.

By 1_E we mean a function that takes the value 1 on E and 0 on E^c.

Proof. If $\mathcal{M} = 1_E L^p(\mathbf{T})$, then it is clear that \mathcal{M} is an S-doubly invariant subspace of $L^p(\mathbf{T})$. It remains to show the converse. If $1_{\mathbf{T}}$ is in \mathcal{M}, then $\mathcal{M} = L^2(\mathbf{T})$ and we are done. So we may assume $1_{\mathbf{T}}$ is not in \mathcal{M}, and let q denote the best approximate of $1_{\mathbf{T}}$ in \mathcal{M}. Then $1_{\mathbf{T}} - q$ is orthogonal to \mathcal{M}. So in particular, $(1_{\mathbf{T}} - q) \perp z^n q$ for all $n \in \mathbf{Z}$. That is,

$$\int_{\mathbf{T}} z^n q |1_{\mathbf{T}} - q|^{p-1} sgn(1_{\mathbf{T}} - q) \, dm = 0$$

for all $n \in \mathbf{Z}$. So, $q |1_{\mathbf{T}} - q|^{p-1} sgn(1_{\mathbf{T}} - q) = 0$ a.e. Let $E = \{z \in \mathbf{T} : q(z) = 1\}$. Then on E^c, $q = 0$ a.e. That is, $q = 1_E$. $1_E L^p(\mathbf{T})$ is the smallest S-doubly invariant subspace of $L^p(\mathbf{T})$ containing 1_E. Therefore, $1_E L^p(\mathbf{T}) \subseteq \mathcal{M}$. It remains
to show that $1_E L^p(T) = M$. Let g be an element of M orthogonal to $1_E L^p(T)$. So in particular, $g \perp 1_E z^n$ for all $n \in \mathbb{Z}$. That is,
\[
\int_T z^n 1_E |g|^{p-1} \text{sgn} g \, dm = 0
\]
for all $n \in \mathbb{Z}$. So, $1_E |g|^{p-1} \text{sgn} g = 0$ a.e. Therefore, $g = 0$ on E. It remains to show that $g = 0$ on E^c. Since g is in M, so are $z^n g$ for all $n \in \mathbb{Z}$. So, $1_T - 1_E \perp z^n g$ for all $n \in \mathbb{Z}$. That is,
\[
\int_T z^n g |1_T - 1_E|^{p-1} \text{sgn} (1_T - 1_E) \, dm = 0
\]
for all $n \in \mathbb{Z}$. So, $g |1_T - 1_E|^{p-1} \text{sgn} (1_T - 1_E) = 0$ a.e. On E^c we see that $g = 0$. Therefore, $g = 0$ a.e. So, $M = 1_E L^p(T)$ as desired. \(\square\)

Remark 1. The above proofs apply equally well for the case $p = 2$, in which case the best approximation operator is then just a Hilbert space orthogonal projection. However, this proof is well known (see [3]).

Remark 2. Another well-known proof for the case $p = 2$ involves the so-called “Wold Decomposition”. This approach is very useful. It applies equally well to Hilbert space shift operators of arbitrary multiplicity (see [2]) as well as for proving the characterization of certain invariant sub-Hilbert spaces of $H^p(T)$ and other Banach spaces of analytic functions (see [5]). These sub-Hilbert spaces are referred to as de Branges subspaces and have received some recent attention. The referee pointed out a generalized “Wold Decomposition” (see [1]) that applies to certain Banach spaces. Such a decomposition would be a useful tool both here and in possibly generalizing the de Branges subspace idea. However, it is unclear to us that such a decomposition may be employed here.

Remark 3. Finally, we point out that the above results are well known and the proofs known to us are found in [3]. It is shown in [3] that the L^p results follow from the case $p = 2$. For $p < 2$ they use a density argument and for the case when $p > 2$ they employ a duality argument utilizing their result for $p < 2$.

References

Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368

E-mail address: redett@math.tamu.edu