Weakly compact operators into sequence spaces: A counterexample
HTML articles powered by AMS MathViewer
- by Kari Ylinen
- Proc. Amer. Math. Soc. 133 (2005), 1423-1425
- DOI: https://doi.org/10.1090/S0002-9939-04-07771-8
- Published electronically: November 19, 2004
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 134 (2006), 311-311.
Abstract:
In a recent paper Gutiérrez and Villanueva have used, without giving a detailed proof, an analogue of a well-known result of Ryan characterizing the weakly compact operators from a Banach space $E$ into the space $c_0(X)$ of null sequences in a Banach space $X$. In this note a counterexample is given showing that in the statement of Gutiérrez and Villanueva an additional condition is needed.References
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Joaquín M. Gutiérrez and Ignacio Villanueva, Extensions of multilinear operators and Banach space properties, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 3, 549–566. MR 1983686, DOI 10.1017/S0308210500002535
- A. Olubummo, Finitely additive measures on the non-negative integers, Math. Scand. 24 (1969), 186–194 (1970). MR 274642, DOI 10.7146/math.scand.a-10929
- Raymond A. Ryan, Dunford-Pettis properties, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 5, 373–379 (English, with Russian summary). MR 557405
- J. D. Maitland Wright and Kari Ylinen, Multilinear maps on products of operator algebras, J. Math. Anal. Appl. 292 (2004), no. 2, 558–570. MR 2047631, DOI 10.1016/j.jmaa.2003.12.024
Bibliographic Information
- Kari Ylinen
- Affiliation: Department of Mathematics, University of Turku, FIN-20014 Turku, Finland
- Email: ylinen@utu.fi
- Received by editor(s): January 8, 2004
- Published electronically: November 19, 2004
- Communicated by: N.Tomczak-Jaegermann
- © Copyright 2004 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 1423-1425
- MSC (2000): Primary 46B45
- DOI: https://doi.org/10.1090/S0002-9939-04-07771-8
- MathSciNet review: 2111968