Euler’s integrals and multiple sine functions
HTML articles powered by AMS MathViewer
- by Shin-ya Koyama and Nobushige Kurokawa
- Proc. Amer. Math. Soc. 133 (2005), 1257-1265
- DOI: https://doi.org/10.1090/S0002-9939-04-07863-3
- Published electronically: December 15, 2004
- PDF | Request permission
Abstract:
We show that Euler’s famous integrals whose integrands contain the logarithm of the sine function are expressed via multiple sine functions.References
- L. Euler “De summis serierum numeros Bernoullianos involventium” Novi commentarii academiae scientiarum Petropolitanae 14 (1769) 129-167 [Opera Omnia I-15, pp.91-130].
- L. Euler “Exercitationes analyticae” Novi commentarii academiae scientiarum Petropolitanae 17 (1772) 173-204 [Opera Omnia I-15, pp.131-167].
- L. Euler “Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques" Mémoires de l’académie des sciences de Berlin 17 (1761) 83-106 (Lu en 1749) [Opera Omnia I-15, pp. 70-90].
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620
- Nobushige Kurokawa, Multiple sine functions and Selberg zeta functions, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), no. 3, 61–64. MR 1105522
- Nobushige Kurokawa, Multiple zeta functions: an example, Zeta functions in geometry (Tokyo, 1990) Adv. Stud. Pure Math., vol. 21, Kinokuniya, Tokyo, 1992, pp. 219–226. MR 1210791, DOI 10.2969/aspm/02110219
- Nobushige Kurokawa and Shin-ya Koyama, Multiple sine functions, Forum Math. 15 (2003), no. 6, 839–876. MR 2010282, DOI 10.1515/form.2003.042
- Shin-ya Koyama and Nobushige Kurokawa, Kummer’s formula for multiple gamma functions, J. Ramanujan Math. Soc. 18 (2003), no. 1, 87–107. MR 1966530
- Nobushige Kurokawa, Hiroyuki Ochiai, and Masato Wakayama, Multiple trigonometry and zeta functions, J. Ramanujan Math. Soc. 17 (2002), no. 2, 101–113. MR 1913896
- Nobushige Kurokawa and Masato Wakayama, On $\zeta (3)$, J. Ramanujan Math. Soc. 16 (2001), no. 3, 205–214. MR 1863604
- Yuri Manin, Lectures on zeta functions and motives (according to Deninger and Kurokawa), Astérisque 228 (1995), 4, 121–163. Columbia University Number Theory Seminar (New York, 1992). MR 1330931
Bibliographic Information
- Shin-ya Koyama
- Affiliation: 2-5-27 Hayabuchi, Tsuzuki-ku, Yokohama 224-0025, Japan
- Email: koyama@tmtv.ne.jp
- Nobushige Kurokawa
- Affiliation: Department of Mathematics, Tokyo Institute of Technology, 152-8551, Tokyo, Japan
- Email: kurokawa@math.titech.ac.jp
- Received by editor(s): August 4, 2003
- Published electronically: December 15, 2004
- Communicated by: David E. Rohrlich
- © Copyright 2004
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1257-1265
- MSC (2000): Primary 11M06
- DOI: https://doi.org/10.1090/S0002-9939-04-07863-3
- MathSciNet review: 2111930