ESSENTIAL NUMERICAL RANGE
OF ELEMENTARY OPERATORS

M. BARRAA

(Communicated by Joseph A. Ball)

Abstract. Let $A = (A_1, ..., A_p)$ and $B = (B_1, ..., B_p)$ denote two p-tuples of operators with $A_i \in \mathcal{L}(H)$ and $B_i \in \mathcal{L}(K)$. Let $R_{2,A,B}$ denote the elementary operators defined on the Hilbert-Schmidt class $C^2(H,K)$ by $R_{2,A,B}(X) = A_1XB_1 + ... + A_pXB_p$. We show that

$$co \left(W_e(A) \circ W(B) \right) \cup \left(W(A) \circ W_e(B) \right) \subseteq V_e(R_{2,A,B}).$$

Here $V_e(.)$ is the essential numerical range, $W(.)$ is the joint numerical range and $W_e(.)$ is the joint essential numerical range.

1. Introduction

Let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on a separable infinite-dimensional Hilbert space H. Let $A = (A_1, ..., A_p)$ and $B = (B_1, ..., B_p)$ denote two p-tuples of operators with $A_i \in \mathcal{L}(H)$ and $B_i \in \mathcal{L}(K)$. Let $R_{A,B} : \mathcal{L}(H) \longrightarrow \mathcal{L}(H)$ denote the elementary operators defined by

$$R_{A,B}(X) = A_1XB_1 + ... + A_pXB_p.$$

The class of Hilbert-Schmidt operators from a Hilbert space H to a Hilbert space K will be denoted by $C^2(H,K)$ and, of course, $C^2(H) = C^2(H,H)$; see [3]. Recall that $C^2(H,K)$ is a Hilbert space and that $A_iXB_i \in C^2(H,K)$ for every $A_i \in \mathcal{L}(H), X \in C^2(H,K)$ and $B_i \in \mathcal{L}(K)$. So the elementary operator $R_{A,B}$ is a bounded endomorphism of $C^2(H,K)$. We denote by $R_{2,A,B}$ the restriction of $R_{A,B}$ to $C^2(H,K)$.

If \mathcal{A} is a Banach algebra with unit e, the algebraic numerical range of an arbitrary element $a \in \mathcal{A}$ is defined by

$$V(a) = \{ f(a); f \in \mathcal{A}', \|f\| = f(e) = 1 \}.$$

Here, of course, \mathcal{A}' denotes the space of all continuous linear functionals on \mathcal{A}. Recall that $V(a)$ is a compact convex set.

For $T \in \mathcal{L}(H)$, the numerical range of T is defined as

$$W(T) = \{ \langle Tx, x \rangle : \|x\| = 1 \}.$$
The essential numerical range, $V_e(T)$, is (by definition) the numerical range of the coset $T + K(H)$ in the Calkin algebra $\mathcal{L}(H)/K(H)$ where $K(H)$ is the ideal of all compact operators on H; see [1] and [2]. It is known that $V_e(T) \subseteq W(T) \cap K(H)$, the closure of $W(T)$.

For a p-tuple $A = (A_1, ..., A_p)$ of operators on a Hilbert space H we define:

- i) the joint numerical range of A by
 \[W(A) = \{(\langle A_1 x, x \rangle, ..., \langle A_p x, x \rangle); \ x \in H, \|x\| = 1\}; \]
- ii) the joint essential numerical range of A by
 \[\lambda \in W_e(A) \text{ if } \lambda = (\lambda_1, ..., \lambda_p) \in C^p \text{ and there exists an orthonormal sequence } (x_n) \text{ in } H \text{ such that } \lambda_i = \text{Lim} (A_i x_n, x_n), \ i = 1, ..., p. \]

To simplify the statements, we shall use the following notation: for $\alpha, \beta \in C^n$, we let $\alpha \circ \beta = \sum_{i=1}^p \alpha_i \beta_i$ and for $K, L \subseteq C^n$,
\[K \circ L = \{ \alpha \circ \beta, \ \alpha \in K, \beta \in L \}. \]

For vectors $x, y \in H$, the notation $x \otimes y$ will refer to the operator in $L(H)$ defined by $x \otimes y(z) = \langle z, y \rangle x$.

In the past, elementary operators and their restrictions to norm ideals in $L(H)$ have been studied by many authors. Up to now, their spectra and their essential spectra have been characterized; see [3] [4] [5]. In [7], B. Magajna has determined the essential numerical range of the restriction of a generalized derivation to the class of Hilbert-Schmidt.

In this paper, we give some results about the essential numerical range of the restriction of an elementary operator to the class of Hilbert-Schmidt. More precisely, we prove that
\[co[(W_e(A) \circ W(B)) \cup (W(A) \circ W_e(B))] \subseteq V_e(R_2, A, B), \]
and we give some consequences of this inclusion.

2. THE ESSENTIAL NUMERICAL RANGE

We need the following characterization of the essential numerical range, obtained by Fillmore, Stampfl, and Williams in [9].

Lemma 2.1. Let $T \in \mathcal{L}(H)$. Each of the following conditions is necessary and sufficient in order that $\lambda \in V_e(T)$:

1. $\langle Tx_n, x_n \rangle \rightarrow \lambda$ for some sequence (x_n) of unit vectors such that $x_n \rightarrow 0$ weakly.
2. $\langle Te_n, e_n \rangle \rightarrow \lambda$ for some orthonormal sequence (e_n).

The main result of this paper is the following.

Theorem 2.2. Let H, K be two separable Hilbert spaces and $A = (A_1, ..., A_p)$, $B = (B_1, ..., B_p)$ two p-tuples with $A_i \in \mathcal{L}(H)$ and $B_i \in \mathcal{L}(K)$ for $i = 1, ..., p$. Then
\[co[(W_e(A) \circ W(B)) \cup (W(A) \circ W_e(B))] \subseteq V_e(R_2, A, B). \]

Proof. Let $\lambda \in W_e(A)$. There exists an orthonormal sequence (x_n) in H such that $\lambda_i = \text{Lim} (A_i x_n, x_n)$ for each $i = 1, ..., p$.

Let $\mu \in W(B)$. There exists a unit vector y in K such that $\mu_i = \langle B_i y, y \rangle$. It is easily verified that $(x_n \otimes y)$ is an orthonormal sequence in $C^2(H, K)$ and
\[\langle A_i (x_n \otimes y) B_i, x_n \otimes y \rangle = tr(A_i (x_n \otimes y) B_i (y \otimes x_n)) = \langle A_i x_n, x_n \rangle \cdot \langle B_i y, y \rangle. \]
Hence,
\[\langle R_{2,A,B}(x_n \otimes y), x_n \otimes y \rangle = \sum_{i=1}^{p} (A_ix_n, x_n) \cdot \langle B_i y, y \rangle . \]

That is, \(\lambda \circ \mu \in V_e(R_{2,A,B}) . \)

The essential numerical range of the restriction of a generalized derivation to the class of Hilbert-Schmidt has been computed in [7], by B. Magajna. He has shown that
\[V_e(\delta_{2,A,B}) = co[(V_e(A) - W(B)^-) \cup (W(A)^- - V_e(B))] . \]

Here we give only the easiest inclusion.

Corollary 2.3. For \(A \in \mathcal{L}(H) \) and \(B \in \mathcal{L}(K) , \)
\[co[(V_e(A) - W(B)^-) \cup (W(A)^- - V_e(B))] \subseteq V_e(\delta_{2,A,B}) . \]

If, in addition, \(V_e(A) = W(A)^- \) or \(V_e(B) = W(B)^- , \) then we have equality.

Corollary 2.4. For \(A \in \mathcal{L}(H) \) and \(B \in \mathcal{L}(K) , \)
\[co[(V_e(A)W(B)^-) \cup (W(A)^- . V_e(B))] \subseteq V_e(M_{2,A,B}) , \]
\[V_e(L_{2,A}) = W(A)^- \text{ and } V_e(R_{2,B}) = W(B)^-. \]

Proof. We have \(W(A)^- \subseteq V_e(L_{2,A}) \subseteq W(L_{2,A})^- = W(A)^- . \)

3. **Nonnegative operators and the essential numerical range**

Lemma 3.1. Let \(A \) be a nonnegative, selfadjoint operator and \(AB = BA . \) Then
\[V_e(AB) \subseteq V_e(A)V_e(B) . \]

Proof. Let \(\lambda \in V_e(AB) . \) There exists a sequence \((x_n) \) of unit vectors in \(H \) such that \(x_n \rightharpoonup 0 \) weakly and
\[\lambda = \text{Lim} \langle AB(x_n), x_n \rangle . \]

Let \(y_n = A^*x_n . \) If \(y_n \rightharpoonup 0 \) for some subsequence, then 0 is in both sides of (1). If not and by passing to a subsequence if necessary, we can assume that \(y_n \neq 0 \) \(\forall n . \)

Put \(z_n = \frac{y_n}{\|y_n\|} . \) Then \((z_n) \) is a sequence of unit vectors with \(z_n \rightharpoonup 0 \) weakly and
\[\lambda = \text{Lim} \langle Bz_n, z_n \rangle \cdot \langle Ax_n, x_n \rangle . \]

But \(\text{Lim} \langle Bz_n, z_n \rangle \in V_e(B) . \) So \(\lambda \in V_e(A)V_e(B) . \)

*Corollary 3.2.** Let \(A \in \mathcal{L}(H) \) be a nonnegative, selfadjoint operator and \(B \in \mathcal{L}(K) . \) Then
\[V_e(M_{2,A,B}) \subseteq W(A)^- W(B)^-. \]

Proof. Recall that \(L_{2,A}R_{2,B} = R_{2,B}L_{2,A} , \)
\[V_e(L_{2,A}) = W(A)^- \text{ and } V_e(R_{2,B}) = W(B)^-. \]

The rest is fromLemma 3.1.

Acknowledgement

The author wishes to express his thanks to the referee for several helpful comments concerning this paper.
References

DéPARTMENT DE MathéMATIQUES, FACULTÉ DES SCIENCES SEMLALIA, MARRAKECH, MAROC

E-mail address: barraa@ucam.ac.ma