TENSOR PRODUCTS
OF σ-WEAKLY CLOSED NEST ALGEBRA SUBMODULES

DONG ZHE

(Communicated by David R. Larson)

ABSTRACT. In this paper we prove that for any unital σ-weakly closed algebra \(A \) which is σ-weakly generated by finite-rank operators in \(A \), every σ-weakly closed \(A \)-submodule has Property \(S_\sigma \). In the case of nest algebras, if \(L_1, \cdots , L_n \) are nests, we obtain the following \(n \)-fold tensor product formula:

\[
U_{\phi_1} \otimes \cdots \otimes U_{\phi_n} = U_{\phi_1} \otimes \cdots \otimes U_{\phi_n},
\]

where each \(U_{\phi_i} \) is the σ-weakly closed \(\text{Alg} L_i \)-submodule determined by an order homomorphism \(\phi_i \) from \(L_i \) into itself.

1. INTRODUCTION

One of the central results in the theory of tensor products of von Neumann algebras is Tomita’s commutation formula:

\[
M' \otimes N' = (M \otimes N)',
\]

where \(M \) and \(N \) are von Neumann algebras. It was observed in [2] that if we let \(L_1 \) and \(L_2 \) denote the projection lattices of \(M \) and \(N \) respectively, then (1) can be rewritten as

\[
\text{Alg} L_1 \overline{\otimes} \text{Alg} L_2 = \text{Alg}(L_1 \otimes L_2).
\]

This version of Tomita’s theorem makes sense for any pair of reflexive algebras \(\text{Alg} L_1 \) and \(\text{Alg} L_2 \). It remains a deep open question whether the tensor product formula (2) is valid for general reflexive algebras, or even general CSL algebras. However, (2) has been verified in a number of special cases ([2], [4], [5], [6], [7]). In particular, it is known that if \(L_1 \) is a commutative subspace lattice that is either completely distributive [8] or of finite width [4], then (2) is valid for \(L_1 \) and any subspace lattice \(L_2 \).

The main purpose of this paper is to study tensor products of σ-weakly closed submodules of some reflexive algebras (in particular, of nest algebras). Section 1 of this paper is devoted to notation and preliminaries. In Section 2, we make use of slice maps to show that if \(A \) is a σ-weakly closed algebra which is σ-weakly generated by finite-rank operators in \(A \), then every σ-weakly closed \(A \)-submodule has Property \(S_\sigma \). As a corollary, we obtain \(U_{\tau_1} \overline{\otimes} U_{\tau_2} = U_{\tau_1} \otimes U_{\tau_2} \), where each \(U_{\tau_i} \) is...
a \(\sigma \)-weakly closed \(\text{Alg} L_i \)-submodule and \(L_i \) is a nest. However, the 2-fold tensor product formula cannot be generalized to the \(n \)-fold formula by induction (see the beginning of Section 3). So in Section 3, we use another method to prove the \(n \)-fold tensor product formula \(U_{\phi_1} \otimes \cdots \otimes U_{\phi_n} = U_{\phi_1 \otimes \cdots \otimes \phi_n} \), where each \(U_{\phi_i} \) is a \(\sigma \)-weakly closed \(\text{Alg} L_i \)-submodule and \(L_i \) is a nest. The key to this proof is \cite[Theorem 2]{B} and \cite[Proposition 2.4]{A}.

In this paper, all Hilbert spaces will be separable. Let \(B(\mathcal{H}) \) be the algebra of bounded operators on \(\mathcal{H} \) and \(\mathcal{F}(\mathcal{H}) \) be the set of finite-rank operators on \(\mathcal{H} \). A sublattice \(L \) of the projection lattice of \(B(\mathcal{H}) \) is said to be a subspace lattice if it contains 0 and 1 and is strongly closed, where we identify projections with their ranges. If the elements of \(L \) pairwise commute, \(L \) is a commutative subspace lattice (CSL). A nest is a totally ordered subspace lattice. If \(L \) is a subspace lattice, \(\text{Alg} L \) denotes the set of operators in \(B(\mathcal{H}) \) that leave the elements of \(L \) invariant. Note that \(\text{Alg} L \) is a \(\sigma \)-weakly closed subalgebra of \(B(\mathcal{H}) \). If \(L \) is a CSL, \(\text{Alg} L \) is said to be a CSL algebra. If \(L \) is a nest, \(\text{Alg} L \) is said to be a nest algebra.

If \(A \) is a subset of \(B(\mathcal{H}) \), then \(\text{Lat} A \), the set of projections left invariant by each element of \(A \), is a subspace lattice. A subalgebra \(A \) of \(B(\mathcal{H}) \) is reflexive if \(A = \text{Alg} \text{Lat} A \). The reflexive algebras are precisely the algebras of the form \(\text{Alg} L \), where \(L \) is a subspace lattice. If \(L_i \subseteq B(\mathcal{H}_i) \) \((i=1, \ldots, n)\) are subspace lattices, \(L_1 \otimes \cdots \otimes L_n \) is the subspace lattice in \(B(\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n) \) generated by \(\{P_1 \otimes \cdots \otimes P_n : P_i \in L_i, i = 1, \ldots, n\} \). If \(S_i \subseteq B(\mathcal{H}_i) \) \((i=1, \ldots, n)\) are \(\sigma \)-weakly closed subspaces, then \(\overline{S_1 \otimes \cdots \otimes S_n} \) denotes the \(\sigma \)-weakly closed linear span of \(\{S_1 \otimes \cdots \otimes S_n : S_i \in S_i\} \) in \(B(\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n) \).

The main technical tool in Section 2 is the use of slice maps. Slice maps were introduced by Tomiyama in \cite{C} and have been used extensively in the study of tensor products of \(C^* \)-algebras and tensor products of von Neumann algebras. We recall some definitions and results from \cite{D} and refer the reader to \cite{D} for further results and motivation. If \(M \) and \(N \) are von Neumann algebras, and \(\phi \) is in the predual \(M_\varepsilon \) of \(M \), then the right slice map \(R_\phi \) is the unique \(\sigma \)-weakly continuous linear map from \(M \overline{\otimes} N \to N \) such that

\[
\langle X, \phi \otimes \psi \rangle = \langle R_\phi(X), \psi \rangle, \quad \forall X \in M \overline{\otimes} N, \psi \in N_\varepsilon.
\]

If \(X = A \otimes B \) \((A \in M, B \in N)\), then \(R_\phi(X) = \langle A, \phi \rangle B \). The left slice map \(L_\psi : M \overline{\otimes} N \to M, \psi \in N_\varepsilon \), is similarly defined. If \(S \subseteq M \) and \(T \subseteq N \) are \(\sigma \)-weakly closed subspaces, let

\[
F(S, T) = \{X \in M \overline{\otimes} N : R_\phi(X) \in T \text{ and } L_\psi(X) \in S, \forall \phi \in M_\varepsilon, \psi \in N_\varepsilon\}.
\]

As noted in \cite{D}, we can replace \(M \) by \(B(\mathcal{H}_1) \) and \(N \) by \(B(\mathcal{H}_2) \) without affecting \(F(S, T) \). Moreover \(S \overline{\otimes} T \subseteq F(S, T) \). Tomiyama proved in \cite{F} that if \(S \) and \(T \) are von Neumann algebras, then

\[
S \overline{\otimes} T = F(S, T).
\]

His proof uses Tomita’s theorem and, in fact, Tomita’s theorem (1) is equivalent to the validity of (3) for von Neumann algebras. Hence (3) can be considered as a possible general version of Tomita’s theorem for \(\sigma \)-weakly closed subspaces.

A \(\sigma \)-weakly closed subspace \(S \subseteq B(\mathcal{H}) \) is said to have Property \(S_\circ \) if

\[
\{X \in S \overline{\otimes} N : R_\phi(X) \in T \text{ for all } \phi \in B(\mathcal{H}_1) \} = S \overline{\otimes} T
\]
for all pairs \(\{ T, N \} \), where \(T \) is a \(\sigma \)-weakly closed subspace of a von Neumann algebra \(N \). \(S \) has \(\text{Property} \ S_\sigma \) if and only if \(F(S, T) = S \overline{\otimes} T \) for all \(\sigma \)-weakly closed subspaces \(T \) of each von Neumann algebra \(N \) \[\text{[7, Remark 1.5]}\].

2. Property \(S_\sigma \)

Let \(\mathcal{A} \) be a reflexive subalgebra of \(B(\mathcal{H}) \). Suppose that \(E \rightarrow \tau(E) \) is an order homomorphism of \(\text{Lat} \mathcal{A} \) into itself (i.e., \(E \leq F \) implies \(\tau(E) \leq \tau(F) \)). Then the set \(\mathcal{U} = \{ T \in B(\mathcal{H}) : (I - \tau(E))TE = 0, \forall E \in \text{Lat} \mathcal{A} \} \) is clearly a \(\sigma \)-weakly closed \(\mathcal{A} \)-submodule of \(B(\mathcal{H}) \). We denote \(\mathcal{U} \) by \(\mathcal{U}_\tau \).

Erdos and Power in \[\text{[1]}\] proved that any \(\sigma \)-weakly closed \(\mathcal{A} \)-submodule of \(B(\mathcal{H}) \) for a nest algebra \(\mathcal{A} \) is of the above form. Here the following result is due to Han Deguang \[\text{[3]}\]:

Theorem H. Let \(\mathcal{A} \) be a unital \(\sigma \)-weakly closed subalgebra which is \(\sigma \)-weakly generated by rank-one operators in \(\mathcal{A} \), and let \(\mathcal{U} \) be a \(\sigma \)-weakly closed \(\mathcal{A} \)-submodule of \(B(\mathcal{H}) \). Then \(\mathcal{U} \) has the form

\[
\mathcal{U} = \{ T \in B(\mathcal{H}) : (I - \tau(E))TE = 0, \forall E \in \text{Lat} \mathcal{A} \},
\]

where \(E \rightarrow \tau(E) = [\mathcal{U}E] \) is an order homomorphism of \(\text{Lat} \mathcal{A} \) into itself.

Theorem 2.1. Let \(\mathcal{A} \) be a unital \(\sigma \)-weakly closed subalgebra of \(B(\mathcal{H}) \) with the property that the finite-rank operators of \(\mathcal{A} \) are \(\sigma \)-weakly dense in \(\mathcal{A} \). Then every \(\sigma \)-weakly closed \(\mathcal{A} \)-submodule has Property \(S_\sigma \).

Proof. Suppose that \(\mathcal{U} \) is a \(\sigma \)-weakly closed \(\mathcal{A} \)-submodule. Let \(T \) be a \(\sigma \)-weakly closed subspace of a von Neumann algebra \(N \), and suppose that \(X \in \mathcal{U} \overline{\otimes} N \) and \(R_\phi(X) \in \mathcal{T} \) for all \(\phi \in B(\mathcal{H})_\phi \). It suffices to show that \(X \in \mathcal{U} \overline{\otimes} T \). Let \(\pi \) be the normal \(* \)-isomorphism of \(B(\mathcal{H}) \) into \(B(\mathcal{H}) \overline{\otimes} N \) defined by \(\pi(A) = A \otimes I \) for \(A \in B(\mathcal{H}) \). If \(F_1, F_2 \in \mathcal{A} \cap \mathcal{F}(\mathcal{H}) \) and \(\phi \in B(\mathcal{H})_\phi \), a routine calculation shows that \(R_\phi(\pi(F_1)X\pi(F_2)) = R_{F_2\phi F_1}(X) \), where \(F_2\phi F_1 \in B(\mathcal{H})_\phi \) is defined by \((A, F_2\phi F_1) = (\langle F_1AF_2, \phi \rangle, A) \in B(\mathcal{H})_\phi \). Hence \(R_\phi(\pi(F_1)X\pi(F_2)) \) is in \(T \) for all \(\phi \in B(\mathcal{H})_\phi \). Since \(\pi(F_0)(\mathcal{U} \overline{\otimes} N)\pi(F_2) = F_1\mathcal{U}F_2 \overline{\otimes} N \) and \(F_1\mathcal{U}F_2 \) has Property \(S_\sigma \) by \[\text{[7, Proposition 1.7]}\], \(\pi(F_0)X\pi(F_2) \) is in \(F_1\mathcal{U}F_2 \overline{\otimes} T \). But \(F_1\mathcal{U}F_2 \subseteq \mathcal{U} \); thus \(\pi(F_0)X\pi(F_2) \in \mathcal{U} \overline{\otimes} T \). Let \(\{ F_0 \} \) be a net in \(\mathcal{A} \cap \mathcal{F}(\mathcal{H}) \) converging \(\sigma \)-weakly to the identity map \(I \). Then \(\pi(F_0)X\pi(F) \) converges \(\sigma \)-weakly to \(X\pi(F) \) for all \(F \in \mathcal{A} \cap \mathcal{F}(\mathcal{H}) \), and so \(X\pi(F) \in \mathcal{U} \overline{\otimes} T \) for all \(F \in \mathcal{A} \cap \mathcal{F}(\mathcal{H}) \). Finally, \(X\pi(F_0) \) converges \(\sigma \)-weakly to \(X \), and so \(X \in \mathcal{U} \overline{\otimes} T \). Hence \(\mathcal{U} \) has Property \(S_\sigma \). \(\square \)

It is known from \[\text{[11]}\] that a commutative subspace lattice \(\mathcal{L} \) is completely distributive if and only if the rank-one subalgebra of \(\text{Alg} \mathcal{L} \) is \(\sigma \)-weakly dense in \(\text{Alg} \mathcal{L} \). Thus we have the following result:

Corollary 2.2. If \(\mathcal{L} \) is a completely distributive CSL, then every \(\sigma \)-weakly closed \(\text{Alg} \mathcal{L} \)-submodule has Property \(S_\sigma \).

If \(\mathcal{L} \) is a completely distributive CSL, it follows from Theorem H that every \(\sigma \)-weakly closed \(\text{Alg} \mathcal{L} \)-submodule is of the form \(\mathcal{U}_\tau \), where \(E \rightarrow \tau(E) \) is an order homomorphism of \(\mathcal{L} \) into itself.

Corollary 2.3. Suppose that \(\mathcal{L}_i \ (i = 1, 2) \) are completely distributive CSLs, and that \(\mathcal{U}_{\tau_i} \ (i = 1, 2) \) are \(\sigma \)-weakly closed \(\text{Alg} \mathcal{L}_i \)-submodules respectively. Then \(\mathcal{U}_{\tau_1} \overline{\otimes} \mathcal{U}_{\tau_2} = F(\mathcal{U}_{\tau_1}, \mathcal{U}_{\tau_2}) \).
Proof. A σ-weakly closed subspace S has Property S_σ if and only if $S \subseteq T = F(S, T)$ for all σ-weakly closed subspaces T ([2] Remark 1.5). Thus the corollary follows from Corollary 2.2.

In the case of nest algebras, we can say more about tensor products of σ-weakly closed nest algebra submodules. In the rest of this paper, we suppose that L_i ($i = 1, 2, \cdots, n$) are nests on separable complex Hilbert spaces H_i and τ_i are order homomorphisms of L_i into L_i.

If $L \in L_1 \otimes \cdots \otimes L_n$, it follows from [2] Proposition 2.4 that

$$L = \vee \{ E_1 \otimes \cdots \otimes E_n : E_1 \otimes \cdots \otimes E_n \leq L \}.$$

Thus we can define

$$\tau(L) = \vee \{ \tau_1(E_1) \otimes \cdots \otimes \tau_n(E_n) : E_1 \otimes \cdots \otimes E_n \leq L \}.$$

Obviously, $(\tau_1 \otimes \cdots \otimes \tau_n)(E_1 \otimes \cdots \otimes E_n) = \tau_1(E_1) \otimes \cdots \otimes \tau_n(E_n)$. Thus $\tau_1 \otimes \cdots \otimes \tau_n$ is a well-defined order homomorphism of $L_1 \otimes \cdots \otimes L_n$ into itself and $U_{\tau_1 \otimes \cdots \otimes \tau_n}$ is a σ-weakly closed $\Alg(L_1 \otimes \cdots \otimes L_n)$-submodule. Hence the equality $\Alg(L_1 \otimes \cdots \otimes \Alg(L_n) = \Alg(L_1 \otimes \cdots \otimes L_n)$ of [2] Theorem 2.6] can be rewritten as

$$U_{\tau_1} \otimes \cdots \otimes U_{\tau_n} = U_{\tau_1 \otimes \cdots \otimes \tau_n},$$

where I_i is the identity map of L_i into L_i.

Lemma 2.4. Let L_i ($i = 1, 2$) be nests on separable Hilbert spaces H_i and τ_i ($i = 1, 2$) be order homomorphisms of L_i into L_i. Then $U_{\tau_1 \otimes \tau_2} = F(U_{\tau_1}, U_{\tau_2})$.

Proof. Suppose that $X \in U_{\tau_1 \otimes \tau_2} \subseteq B(H_1 \otimes H_2)$. If $E_2 \in L_2$ and $\phi \in B(H_2)_*$, it follows from [7] (1.3) that

$$\tau_2(E_2)R_{\phi}(X)E_2 = R_{\phi}((I_1 \otimes \tau_2(E_2))X(I_1 \otimes E_2)) = R_{\phi}((I_1 \otimes \tau_2(E_2))(\tau_1(I_1) \otimes \tau_2(E_2))X(I_1 \otimes E_2)) = R_{\phi}(E_2X(I_1 \otimes E_2)) = R_{\phi}(X_1 \otimes E_2).$$

So $R_{\phi}(X) \in U_{\tau_1 \otimes \tau_2}$. Similarly, $L_{\phi}(X) \in U_{\tau_1}$ for all $\psi \in B(H_2)_*$. Hence by the definition of $F(U_{\tau_1}, U_{\tau_2})$, we have $U_{\tau_1 \otimes \tau_2} \subseteq F(U_{\tau_1}, U_{\tau_2})$.

Conversely, suppose that $X \in F(U_{\tau_1}, U_{\tau_2})$. If $E_2 \in L_2$ and $\phi \in B(H_2)_*$, then $\tau_2(E_2)R_{\phi}(X)E_2 = R_{\phi}(X_1 \otimes E_2)$. Thus $R_{\phi}((I_1 \otimes \tau_2(E_2))(\tau_1(I_1) \otimes \tau_2(E_2))X(I_1 \otimes E_2)) = R_{\phi}(X_1 \otimes E_2)$ for all $\phi \in B(H_2)_*$. It follows from [7] (1.5) that

$$X(E_1 \otimes E_2) = (\tau_1 \otimes \tau_2(E_2))X(I_1 \otimes E_2).$$

Similarly, if $E_1 \in L_1$, we have that $X(E_1 \otimes I_2) = (\tau_1 \otimes \tau_2(I_2))X(I_1 \otimes E_2)$. Therefore,

$$X(E_1 \otimes E_2) = X(E_1 \otimes I_2)(I_1 \otimes E_2),$$

and

$$X(E_1 \otimes E_2) = \tau_1(E_1) \otimes \tau_2(E_2)X(E_1 \otimes E_2).$$

Thus, by virtue of [2] Proposition 2.4, it is easy to show that $X \in U_{\tau_1 \otimes \tau_2}$ for each $L \in L_1 \otimes L_2$. Hence $X \in U_{\tau_1 \otimes \tau_2}$ and $U_{\tau_1 \otimes \tau_2} = F(U_{\tau_1}, U_{\tau_2})$.

Theorem 2.5. Let L_i and τ_i be as in the preceding lemma. Then $U_{\tau_1 \otimes \tau_2} = U_{\tau_1 \otimes \tau_2}$.

Proof. Since every nest is a completely distributive CSL, the theorem follows from Corollary 2.3 and Lemma 2.4, obviously.
3. The n-fold tensor product formula

Since \(\mathcal{L}_1 \otimes \mathcal{L}_2 \) is not totally ordered in general, we cannot deduce the tensor product formula \(\mathcal{U}_{\tau_1} \otimes_{\tau_2} \otimes_{\tau_3} = \mathcal{U}_{\tau_1} \otimes \mathcal{U}_{\tau_2} \otimes \mathcal{U}_{\tau_3} \) by

\[
\mathcal{U}_{\tau_1} \otimes_{\tau_2} \otimes_{\tau_3} = U_{(\tau_1 \otimes \tau_2) \otimes \tau_3} = U_{\tau_1 \otimes \tau_2} \otimes U_{\tau_3} = \mathcal{U}_{\tau_1} \otimes \mathcal{U}_{\tau_2} \otimes \mathcal{U}_{\tau_3}.
\]

(In order to use Theorem 2.5, the second equality needs the totally ordered property of \(\mathcal{L}_1 \otimes \mathcal{L}_2 \).) So we cannot generalize Theorem 2.5 to \(n \)-fold tensor products for \(n > 2 \) by induction. In this section, instead of the slice maps, we shall use Theorem H to prove the \(n \)-fold tensor product formula. Let \(\mathcal{L}_i \) (\(i = 1, \ldots, n \)) be nests and let \(\mathcal{U}_i \) be \(\sigma \)-weakly closed \(\mathcal{L}_i \)-submodules. From Theorem H, it follows from \(\mathcal{U}_i = \mathcal{U}_{\tau_i} \), where \(\tau_i(E) = [\mathcal{U}_i E] \) for any \(E \in \mathcal{L}_i \). In the rest of this section, we always use \(\tau_i \) to denote these special order homomorphisms.

Lemma 3.1. For each \(i = 1, \ldots, n \), let \(E_i \in \mathcal{L}_i \) and \(f_i \in E_i \) such that \([Alg \mathcal{L}_i] f_i = E_i\). Then \([Alg \mathcal{L}_1] \otimes \ldots \otimes [Alg \mathcal{L}_n] (f_1 \otimes \ldots \otimes f_n) = \mathcal{U}_{\tau_1} \otimes \ldots \otimes \mathcal{U}_{\tau_n} E_n\).

Proof. Since \(\mathcal{U}_i \cdot Alg \mathcal{L}_i = \mathcal{U}_{\tau_i} \), \([\mathcal{U}_i E_i] = [\mathcal{U}_{\tau_i} f_i] \). By virtue of [2] Lemma 2.2,

\[
E_1 \otimes \ldots \otimes E_n = [(Alg \mathcal{L}_1) \otimes \ldots \otimes (Alg \mathcal{L}_n)](f_1 \otimes \ldots \otimes f_n).
\]

Thus, since \((\mathcal{U}_{\tau_1} \otimes \ldots \otimes \mathcal{U}_{\tau_n})(Alg \mathcal{L}_1) \otimes \ldots \otimes (Alg \mathcal{L}_n) = \mathcal{U}_{\tau_1} \otimes \ldots \otimes \mathcal{U}_{\tau_n}\),

\[
[\mathcal{U}_1 \otimes \ldots \otimes \mathcal{U}_n] (f_1 \otimes \ldots \otimes f_n) = [\mathcal{U}_{\tau_1} \otimes \ldots \otimes \mathcal{U}_{\tau_n}(f_1 \otimes \ldots \otimes f_n)]
\]

Hence it suffices to prove that

\[
[\mathcal{U}_1 \otimes \ldots \otimes \mathcal{U}_n](f_1 \otimes \ldots \otimes f_n) = [\mathcal{U}_{\tau_1} f_1] \otimes \ldots \otimes [\mathcal{U}_{\tau_n} f_n].
\]

If \(g_i \) is any vector in \([\mathcal{U}_i f_i]\), then \(g_i \) can be norm approximated by vectors of the form \(T_i f_i \), where \(T_i \in \mathcal{U}_i \). Hence \(g_1 \otimes \ldots \otimes g_n \) can be approximated by vectors of the form \(T_1 f_1 \otimes \ldots \otimes T_n f_n = (T_1 \otimes \ldots \otimes T_n)(f_1 \otimes \ldots \otimes f_n) \). Thus any vector of the form \(g_1 \otimes \ldots \otimes g_n \) with \(g_i \in [\mathcal{U}_i f_i] \) lies in \([\mathcal{U}_1 \otimes \ldots \otimes \mathcal{U}_n](f_1 \otimes \ldots \otimes f_n]\).

Since such vectors generate \([\mathcal{U}_1 f_1] \otimes \ldots \otimes [\mathcal{U}_n f_n]\), we have \([\mathcal{U}_1 f_1] \otimes \ldots \otimes [\mathcal{U}_n f_n] \subseteq [\mathcal{U}_1 \otimes \ldots \otimes \mathcal{U}_n](f_1 \otimes \ldots \otimes f_n)\).

To prove the reverse inequality, for any \(T_i \in \mathcal{U}_i \), we have that

\[
([\mathcal{U}_1 f_1] \otimes \ldots \otimes [\mathcal{U}_n f_n])(T_1 \otimes \ldots \otimes T_n)(E_1 \otimes \ldots \otimes E_n)
\]

\[
= ([\mathcal{U}_1 E_1] \otimes \ldots \otimes [\mathcal{U}_n E_n])(T_1 \otimes \ldots \otimes T_n)(E_1 \otimes \ldots \otimes E_n)
\]

\[
= (\tau_1(E_1) \otimes \ldots \otimes \tau_n(E_n))(T_1 \otimes \ldots \otimes T_n)(E_1 \otimes \ldots \otimes E_n)
\]

\[
= \tau_1(E_1)T_1E_1 \otimes \ldots \otimes \tau_n(E_n)T_nE_n
\]

\[
= T_1E_1 \otimes \ldots \otimes T_nE_n
\]

\[
= (T_1 \otimes \ldots \otimes T_n)(E_1 \otimes \ldots \otimes E_n).
\]

This shows that

\[
([\mathcal{U}_1 f_1] \otimes \ldots \otimes [\mathcal{U}_n f_n])[\mathcal{U}_1 \otimes \ldots \otimes \mathcal{U}_n](E_1 \otimes \ldots \otimes E_n)
\]

\[
= [\mathcal{U}_1 \otimes \ldots \otimes \mathcal{U}_n](E_1 \otimes \ldots \otimes E_n)].
\]

Thus

\[
[\mathcal{U}_1 \otimes \ldots \otimes \mathcal{U}_n](f_1 \otimes \ldots \otimes f_n) \leq [\mathcal{U}_1 f_1] \otimes \ldots \otimes [\mathcal{U}_n f_n].
\]

Therefore

\[
[\mathcal{U}_1 \otimes \ldots \otimes \mathcal{U}_n](f_1 \otimes \ldots \otimes f_n) = [\mathcal{U}_1 f_1] \otimes \ldots \otimes [\mathcal{U}_n f_n].
\]

This completes the proof. \(\square \)
Theorem 3.2. Let \mathcal{U}_i ($i = 1, \cdots, n$) be σ-weakly closed $\text{Alg} \mathcal{L}_i$-submodules and $\tau_i(E) = [\mathcal{U}_i E]$ for any $E \in \mathcal{L}_i$. Then $\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n = \mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n$.

Proof. It is obvious that $\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n$ is a σ-weakly closed $\text{Alg} \mathcal{L}_1 \otimes \cdots \otimes \text{Alg} \mathcal{L}_n$-submodule. By virtue of [2, Theorem 2.6], $\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n$ is a σ-weakly closed $\text{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$-submodule. It follows from [2, Proposition 2.7] that $\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n$ is a completely distributive CSL. Thus, Theorem H shows that $\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n$ is determined by the order homomorphism $L \rightarrow [[\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n] L]$ of $\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n$ into itself.

Now suppose that $E_i \in \mathcal{L}_i$. For each i, choose a vector $v_i \in E_i$ such that $[(\text{Alg} \mathcal{L}_i) v_i] = E_i$ (the proof of the existence of such v_i is routine). It follows from Lemma 3.1 that

$$[(\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n)(E_1 \otimes \cdots \otimes E_n)] = [\mathcal{U}_1 E_1] \otimes \cdots \otimes [\mathcal{U}_n E_n] = \tau_1(E_1) \otimes \cdots \otimes \tau_n(E_n) = (\tau_1 \otimes \cdots \otimes \tau_n)(E_1 \otimes \cdots \otimes E_n).$$

If $L \in \mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n$, [2, Proposition 2.4] shows that

$$L = \vee\{E_1 \otimes \cdots \otimes E_n : E_1 \otimes \cdots \otimes E_n \leq L\}.$$

Thus,

$$[(\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n)L] = \vee\{(\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n)(E_1 \otimes \cdots \otimes E_n) : E_1 \otimes \cdots \otimes E_n \leq L\} = \vee\{(\tau_1 \otimes \cdots \otimes \tau_n)(E_1 \otimes \cdots \otimes E_n) : E_1 \otimes \cdots \otimes E_n \leq L\} = (\tau_1 \otimes \cdots \otimes \tau_n)(L).$$

Hence $\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n$ and $\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n$ are σ-weakly closed $\text{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$-submodules determined by the same order homomorphism. This shows that

$$\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n = \mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n.$$

\[\square\]

Given general order homomorphisms ϕ_i from \mathcal{L}_i into \mathcal{L}_i, we will consider the relation between $\mathcal{U}_i \otimes \cdots \otimes \mathcal{U}_\phi_i$ and $\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_\phi_i$. We need some lemmas at first.

For non-zero vectors $x, y \in \mathcal{H}$, the rank-one operator xy^* is defined by the equation

$$(xy^*)(z) = \langle z, y \rangle x, \quad \forall z \in \mathcal{H}.$$

Lemma 3.3. Suppose that \mathcal{L} is a subspace lattice, and that \mathcal{U}_ϕ is the σ-weakly closed $\text{Alg} \mathcal{L}$-submodule determined by an order homomorphism ϕ from \mathcal{L} into itself. Then a rank-one operator $xy^* \in \mathcal{U}_\phi$ if and only if there exists an element $N \in \mathcal{L}$ such that $x \in N$ and $y \in \phi_\rightarrow(N)^+ \backslash \phi(N)$, where $\phi_\rightarrow(N) = \vee\{G \in \mathcal{L} : \phi(G) \nsubseteq N\}$.

Proof. The proof is routine. We leave the details to the interested readers.

\[\square\]

Lemma 3.4. Let \mathcal{L}_i be a nest and ϕ_i be an order homomorphism from \mathcal{L}_i into itself. Define $\psi_i : I_1 \otimes \cdots \otimes I_i \otimes \cdots \otimes I_n \rightarrow I_1 \otimes \cdots \otimes I_i \otimes \cdots \otimes I_n$ by

$$\psi_i(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n) = I_1 \otimes \cdots \otimes \phi_i(N_i) \otimes \cdots \otimes I_n, \quad \forall N_i \in \mathcal{L}_i.$$

Then the rank-one operator $xy^* \in \mathcal{U}_\phi$ if and only if there exists an element $N_i \in \mathcal{L}_i$ such that $x \in I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n$ and $y \in I_1 \otimes \cdots \otimes \phi_i(N_i)^+ \otimes \cdots \otimes I_n$.

\[\square\]
Proof. Certainly ψ_i is an order homomorphism from $I_1 \otimes \cdots \otimes I_n$ into itself, and U_{ψ_i} is the σ-weakly closed $\text{Alg}(I_1 \otimes \cdots \otimes I_n)$-submodule determined by ψ_i. By virtue of Lemma 3.3, a rank-one operator $xy^* \in U_{\psi_i}$ if and only if there exists an element $N_i \in L_i$ such that $x \in I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n$ and $y \in \psi_i^{-1}(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n)^{\perp}$. In the following, we compute $\psi_i^{-1}(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n)^{\perp}$.

By the definition of ψ_i^{-1}, we have

$$\psi_i^{-1}(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n) = \{ I_1 \otimes \cdots \otimes G_i \otimes \cdots \otimes I_n : \psi_i(I_1 \otimes \cdots \otimes G_i \otimes \cdots \otimes I_n) \not\supseteq I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n \}$$

$$= \{ I_1 \otimes \cdots \otimes G_i \otimes \cdots \otimes I_n : \psi_i(G_i) \not\supseteq I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n \}$$

$$= \{ I_1 \otimes \cdots \otimes (\bigvee G_i \subseteq \phi_i(G_i) \not\supseteq N_i) \}$$

$$= \{ I_1 \otimes \cdots \otimes (I_1 \otimes \cdots \otimes I_n \otimes \cdots \otimes I_n) \}$$

and so $\phi_i^{-1}(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n)^{\perp} = I_1 \otimes \cdots \otimes \phi_i^{-1}(N_i)^{\perp} \otimes \cdots \otimes I_n$. □

Proposition 3.5. Let $L_i (i = 1, \ldots, n)$ be nests and ϕ_i be order homomorphisms from L_i into itself. Then a rank-one operator $xy^* \in \text{U}_{\phi_1 \otimes \cdots \otimes \phi_n}$ if and only if there exist $N_i \in L_i$ such that $x \in I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n$ and $y \in \phi_i^{-1}(N_i)^{\perp} \otimes \cdots \otimes \phi_n^{-1}(N_n)^{\perp}$.

Proof. Set $F_i = I_1 \otimes \cdots \otimes L_i \otimes \cdots \otimes I_n$, and define $\psi_i : F_i \to F_i$ by

$$\psi_i(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n) = I_1 \otimes \cdots \otimes \phi_i(N_i) \otimes \cdots \otimes I_n, \quad \forall N_i \in L_i.$$

Each ψ_i is an order homomorphism from F_i into itself and U_{ψ_i} is the σ-weakly closed $\text{Alg}(F_i)$-submodules determined by ψ_i. Thus we have the equation $U_{\phi_1 \otimes \cdots \otimes \phi_n} = U_{\psi_1} \cap \cdots \cap U_{\psi_n}$. In fact, by virtue of [2, Proposition 2.4],

$$L = \{ N_1 \otimes \cdots \otimes N_n : N_1 \otimes \cdots \otimes N_n \leq L \}$$

for any $L \in L_1 \otimes \cdots \otimes L_n$.

Thus it is easy to show that

$$U_{\phi_1 \otimes \cdots \otimes \phi_n} = \{ T \in B(\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n) : T(N_1 \otimes \cdots \otimes N_n) \subseteq \phi_1(N_1) \otimes \cdots \otimes \phi_n(N_n), \forall N_i \in L_i \},$$

and so $U_{\phi_1 \otimes \cdots \otimes \phi_n} \subseteq U_{\psi_1} \cap \cdots \cap U_{\psi_n}$. For any $T \in U_{\psi_1} \cap \cdots \cap U_{\psi_n}$, we have that for any $N_i \in L_i$,

$$T(N_1 \otimes \cdots \otimes N_n) \subseteq T(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n) \subseteq I_1 \otimes \cdots \otimes \phi_i(N_i) \otimes \cdots \otimes I_n, \quad \forall 1 \leq i \leq n.$$

Thus $T(N_1 \otimes \cdots \otimes N_n) \subseteq \phi_1(N_1) \otimes \cdots \otimes \phi_n(N_n)$ and $T \in U_{\phi_1 \otimes \cdots \otimes \phi_n}$. Hence $U_{\phi_1 \otimes \cdots \otimes \phi_n} = U_{\psi_1} \cap \cdots \cap U_{\psi_n}$. From Lemma 3.4 it follows that for any $1 \leq i \leq n$, a rank-one operator $xy^* \in U_{\psi_i}$ if and only if there exists $N_i \in L_i$ such that $x \in I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n$ and $y \in \psi_i^{-1}(N_i)^{\perp} \otimes \cdots \otimes I_n$. Therefore a rank-one operator $xy^* \in U_{\psi_1} \cap \cdots \cap U_{\psi_n} = U_{\phi_1 \otimes \cdots \otimes \phi_n}$ if and only if there exists $N_i \in L_i (1 \leq i \leq n)$ such that $x \in N_1 \otimes \cdots \otimes N_n$ and $y \in \phi_i^{-1}(N_i)^{\perp} \otimes \cdots \otimes \phi_n^{-1}(N_n)^{\perp}$. □

Lemma 3.6. Suppose that L is a subspace lattice and that U_{ϕ} is the σ-weakly closed $\text{Alg} L$-submodule determined by an order homomorphism ϕ from L into itself. Then $\tau \leq \phi$ and $\tau_* = \phi_*$, where $\tau(E) = [U_{\phi} E]$ for any $E \in L$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. It follows from the definition of \mathcal{U}_ϕ that
\[\tau(E) = [\mathcal{U}_\phi E] \leq \phi(E) \quad \text{for any} \quad E \in \mathcal{L}. \]
So $\tau \leq \phi$.

Since $\tau \leq \phi$, we have $\tau_\omega \geq \phi_\omega$. So it suffices to show that $\tau_\omega \leq \phi_\omega$. If not, there exists $E \in \mathcal{L}$ such that $\tau_\omega(E) \not\leq \phi_\omega(E)$. It follows from the definition of τ_ω that there exists $F \in \mathcal{L}$ such that $\tau(F) \not\geq E$ and $F \not\leq \phi_\omega(E)$. Thus we can choose non-zero vectors x, y such that $x \in E$ and $x \not\in \tau(F)$, $y \in \phi_\omega(E)\dagger$ and $y \not\in F\dagger$. From Lemma 3.3, it follows that $x \otimes y \in \mathcal{U}_\phi$. Since $(I - \tau(F))(x \otimes y)F \neq 0$, $x \otimes y \not\in \mathcal{U}_\tau$. However it follows from the proof of Theorem H that $\mathcal{U}_\tau = \mathcal{U}_\phi$. This is a contradiction. Accordingly, $\tau_\omega \leq \phi_\omega$ and $\tau_\omega = \phi_\omega$. \hfill\Box

Now we are in the position to show the general tensor product formula of σ-weakly closed \mathcal{L}_τ-submodules.

Theorem 3.7. Let \mathcal{L}_i $(i = 1, \cdots, n)$ be nests and ϕ_i be order homomorphisms from \mathcal{L}_i into itself. Then $\mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n} = \mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n}$.

Proof. It follows from Theorem H that $\mathcal{U}_{\phi_i} = \mathcal{U}_{\tau_i}$, where $\tau_i(E) = [\mathcal{U}_{\phi_i} E]$ for any $E \in \mathcal{L}_i$. Thus by virtue of Theorem 3.2, we have that
\[\mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n} = \mathcal{U}_{\tau_1 \otimes \cdots \otimes \tau_n}. \]
So it suffices to show $\mathcal{U}_{\tau_1 \otimes \cdots \otimes \tau_n} = \mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n}$. Since $\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n$ is a completely distributive CSL ([2], Proposition 2.7]), it follows from [10] Theorem 3 that the rank-one operators of $\text{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$ are σ-weakly dense in $\text{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$. So it is routine to show that the linear spans of rank-one operators in $\mathcal{U}_{\tau_1 \otimes \cdots \otimes \tau_n}$ and $\mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n}$ are σ-weakly dense in $\mathcal{U}_{\tau_1 \otimes \cdots \otimes \tau_n}$ and $\mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n}$, respectively. From Proposition 3.5 and Lemma 3.6, it follows that $\mathcal{U}_{\tau_1 \otimes \cdots \otimes \tau_n}$ and $\mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n}$ have the same rank-one operators. Therefore $\mathcal{U}_{\tau_1 \otimes \cdots \otimes \tau_n} = \mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n}$ and $\mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n} = \mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n}$. \hfill\Box

Remark 3.8. Theorem 2.5 is a particular case of Theorem 3.2. In [3], Theorem 2.2 shows that \mathcal{U}_{τ_i} $(i = 1, \cdots, n)$ are reflexive subspaces. Combining the above result, we know that the tensor product of \mathcal{U}_{τ_i} is also reflexive. It is natural to ask whether the tensor product of reflexive subspaces is also reflexive. This seems a challenging problem.

References

Department of Mathematics, Zhejiang University, Hangzhou, 310027, People’s Republic of China

E-mail address: dongzhe@zju.edu.cn