A SIMPLE PROOF OF THE MODULAR IDENTITY
FOR THETA SERIES

Y. CHOIE AND Y. TAGUCHI

(Communicated by Juha M. Heinonen)

Abstract. We characterize the function spanned by theta series. As an application we derive a simple proof of the modular identity of the theta series.

1. Introduction

The standard proof of the theta modular transformation formula uses the Poisson summation formula. In [1], using the elliptic shift relations, a simple proof of the theta modular transformation formula was given for the theta function

$$\theta(\tau, z) = \sum_{r \in \mathbb{Z}} e^{\pi ir^2 \tau + 2\pi irz}.$$

In this paper we show that a similar method can be employed to derive the theta modular transformation formula for more general theta series by taking into account the heat kernel property in addition to the elliptic shift relations. These properties characterize the functions spanned by certain theta functions (Section 2). This is applied in Section 3 to derive the modular identity for the theta series.

2. Theta series

Let $\mathcal{H} \subset \mathbb{C}$ be the complex upper half plane. The following theta series has been studied in connection with Jacobi forms ([2], §5); for each $m \in \mathbb{Z}$ ($m \geq 1$) and each $\mu \text{ (mod } 2m),$ (2.1)

$$\theta_{m, \mu}(\tau, z) = \sum_{r \in \mathbb{Z}, r \equiv \mu \text{ (mod } 2m)} q^{\frac{r^2}{4m}} \xi^r, \quad q = e^{2\pi i \tau}, \xi = e^{2\pi iz}.$$

This series converges uniformly in $z \in \mathbb{C}$ and $\tau \in \mathcal{H}$ and hence defines a holomorphic function on $\mathcal{H} \times \mathbb{C}$. One easily checks that $\theta_{m, \mu}(\tau, z + 1) = \theta_{m, \mu}(\tau, z)$ and that $\theta_{m, \mu}(\tau, z + \tau) = q^{-m} \xi^{-2m} \theta_{m, \mu}(\tau, z)$. Furthermore, one can check that $L_m(\theta_{m, \mu}(\tau, z)) = 0$, where L_m is the heat operator defined by

$$L_m = 8\pi im \frac{\partial}{\partial \tau} - \frac{\partial^2}{\partial z^2}.$$

Received by the editors January 22, 2004 and, in revised form, March 18, 2004.
2000 Mathematics Subject Classification. Primary 14K25; Secondary 11F50, 11F03.
This work was partially supported by KOSEF R01-2003-00011596-0.

©2005 American Mathematical Society
Reverts to public domain 28 years from publication
1935

[License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use]
Since these conditions are \mathbb{C}-linear, any \mathbb{C}-linear combination of the $\theta_{m,\mu}(\tau,z)$’s satisfies these three conditions. Conversely, we prove the following result:

Theorem 2.1. Let $f(\tau,z)$ be a holomorphic function defined over $\mathcal{H} \times \mathbb{C}$ satisfying the following three conditions:

1. **(shift)** $f(\tau,z+1) = f(\tau,z)$,
2. **(elliptic property)** $f(\tau,z+\tau) = e^{-2\pi im(\tau+2z)}f(\tau,z)$,
3. **(heat kernel)** $L_m(f(\tau,z)) = 0$.

Then $f(\tau,z)$ belongs to the vector space spanned by $\{\theta_{m,\mu}(\tau,z) \mid 0 \leq \mu \leq (2m-1)\}$ over \mathbb{C}.

Proof. Since f is periodic with respect to z, f has the following Fourier expansion in $\xi = e^{2\pi iz}$:

$$f(\tau,z) = \sum_{r \in \mathbb{Z}} \phi_r(\tau)\xi^r.$$

Secondly, since $L_m(f) = 0$, we note that

$$4m \frac{d\phi_r(\tau)}{d\tau} = 2\pi ir^2 \phi_r(\tau),$$

so that $\phi_r(\tau) = c_r e^{2\pi ir^2 \tau \frac{2}{m}} = c_r q^{\frac{4r^2}{m}}$, where c_r is a constant depending on r. So, $f(\tau,z) = \sum_{r \in \mathbb{Z}} c_r q^{\frac{4r^2}{m}}\xi^r$. On the other hand, since

$$f(\tau,z+\tau) = \sum_{r \in \mathbb{Z}} c_r q^{\frac{4r^2}{m}}(\xi q)^r = \sum_{r \in \mathbb{Z}} c_r q^{r^2+2r\tau+2m\frac{2}{m}} q^{-m\xi(r+2m)-2m}$$

$$= q^{-m}\xi^{-2m} \sum_{r \in \mathbb{Z}} c_{r-2m} q^{\frac{4r^2}{m}}\xi^r,$$

the elliptic property $f(\tau,z+\tau) = q^{-m}\xi^{-2m}f(\tau,z)$ implies that $c_r = c_{r+2m}$ for every $r \in \mathbb{Z}$. Now it follows that $f(\tau,z) = \sum_{\mu=0}^{2m-1} c_\mu \theta_{m,\mu}(\tau,z)$. \qed

Remark 2.2. The case of $m = \frac{1}{2}$ was studied in [1]. In that case, only the first two conditions of Theorem 2.1 (that is, the shift and elliptic properties) were needed to show that $f(\tau,z)$ is a constant multiple of the theta series $\theta_{1/2,0}(\tau,z) = \sum_{r \in \mathbb{Z}} e^{2\pi ir^2+2\pi irz}$. This is because such an $f(\tau,z)$ has only one zero, $\frac{\tau+1}{2}$, modulo the period lattice $\mathbb{Z} + \tau\mathbb{Z}$, which is already a strong enough restriction. This does not hold anymore in our case.

The referee pointed out that the characterization of the theta series $\theta(\tau,z) = \sum_{r \in \mathbb{Z}} e^{2\pi ir^2+2\pi irz}$, i.e., the case when $m = \frac{1}{2}$, has also been studied in [2] (see Proposition 11.1 on page 53).

Theorem 2.3. For each fixed τ, let $f(\tau,z)$ be a holomorphic function satisfying the two relations [1] and [2] in Theorem 2.1. Then

1. f vanishes identically or it has $2m$ roots (counting with multiplicity) modulo the lattice $\Lambda(\tau)$ generated by τ and 1, i.e., $\Lambda(\tau) = \mathbb{Z} + \tau\mathbb{Z}$.
2. The sum of all the roots z_j modulo $\Lambda(\tau)$ of f satisfies

$$z_0 + z_1 + \ldots + z_{2m-1} \equiv m(\tau+1) \pmod{\Lambda(\tau)}.$$
Lemma 3.1. Let

\[F(\tau, z) := \sqrt{2\pi i/\tau} e^{-2\pi i m\tau} \theta_{m, \mu}(-\frac{1}{\tau}, \frac{z}{\tau}). \]

Then \(F(\tau, z) \) belongs to the vector space spanned by \(\{\theta_{m, \nu}(\tau, z) \mid 0 \leq \nu \leq (2m-1)\} \), so there exist complex numbers \(c_{0, \mu}, ..., c_{2m-1, \mu} \) such that

\[\sqrt{2\pi i/\tau} e^{-2\pi i m\tau} \theta_{m, \mu}(-\frac{1}{\tau}, \frac{z}{\tau}) = c_{0, \mu} \theta_{m, 0}(\tau, z) + c_{1, \mu} \theta_{m, 1}(\tau, z) + ... + c_{2m-1, \mu} \theta_{m, 2m-1}(\tau, z). \]

Proof. We check the three conditions of Theorem 2.3 for \(F(\tau, z) \). This can be done by straightforward calculations, and we omit the details. For example, the condition (1) can be checked as follows by looking at the Fourier expansion:

\[F(\tau, z + 1) = \sqrt{2\pi i/\tau} e^{-2\pi i m\tau} \sum_{r \in \mathbb{Z}, r \equiv \mu (\text{mod } 2m)} e^{-2\pi i r^2 z / 4m} e^{2\pi i r z / 2m} = F(\tau, z). \]

In what follows, we put \(\zeta_{2m} = e^{2\pi i/2m}. \)

Lemma 3.2. (1) \(\theta_{m, \mu}(\tau, z + \frac{r}{2m}) = q^{-\frac{1}{4m}} \xi^{-1} \theta_{m, \mu+1}(\tau, z) \) for each \(\mu, 0 \leq \mu \leq (2m-1) \). Here we put \(\theta_{m, 2m}(\tau, z) = \theta_{m, 0}(\tau, z) \).

(2) \(\theta_{m, \mu}(\tau, z + \frac{1}{2m}) = \zeta_{2m} \theta_{m, \mu}(\tau, z) \).
Theorem 3.3. We have
\[\theta_{m,\mu}(\tau, z + \frac{\tau}{2m}) = \sum_{r \equiv \mu} q^{r \overline{2m}} \xi^r q^{2r} = \sum_{r \equiv \mu} q^{2r} - \frac{1}{4m} \xi^{(r+1)} = q^{-\frac{1}{4m}} \xi^{-1} \sum_{r \equiv \mu+1} q^{2r} \xi^r = q^{-\frac{1}{4m}} \xi^{-1} \theta_{m,\mu+1}(\tau, z). \]

(2) can be checked even more easily and the proof is omitted. \qed

Finally we can derive the following well-known modular transformation formula:

Theorem 3.3. We have
\[\theta_{m,\mu}(\tau, z) \sqrt{\frac{2mi}{\tau}} e^{-2\pi im \frac{z^2}{\tau}} = \theta_{m,0}(\tau, z) + \zeta_{2m}^{m,\mu} \theta_{m,1}(\tau, z) + \ldots + \zeta_{2m}^{(2m-1)\mu} \theta_{m,2m-1}(\tau, z). \]

Proof. We prove this result by three steps.

(Step 1) First note that, from Lemma 3.1, we can let
\[\theta_{m,\mu}(\frac{1}{\tau}, \frac{z}{\tau}) \sqrt{\frac{2mi}{\tau}} e^{-2\pi im \frac{z^2}{\tau}} \]
\[= \theta_{m,0}(\tau, z) + \zeta_{2m}^{m,\mu} \theta_{m,1}(\tau, z) + \ldots + \zeta_{2m}^{(2m-1)\mu} \theta_{m,2m-1}(\tau, z). \]
Replacing \(z \) by \(z + \frac{\tau}{2m} \) in this equation, we have
\[\theta_{m,\mu}(\frac{1}{\tau}, \frac{z}{\tau} + \frac{1}{2m}) \sqrt{\frac{2mi}{\tau}} e^{-2\pi im \frac{z^2}{\tau}} \]
\[= \theta_{m,0}(\tau, z + \frac{\tau}{2m}) + \zeta_{2m}^{m,\mu} \theta_{m,1}(\tau, z + \frac{\tau}{2m}) + \ldots + \zeta_{2m}^{(2m-1)\mu} \theta_{m,2m-1}(\tau, z + \frac{\tau}{2m}). \]
Using Lemma 3.2 and multiplying by \(q^{1/2m} \xi \) on both sides, we have
\[\zeta_{2m}^{m,\mu} \theta_{m,1}(\frac{1}{\tau}, \frac{z}{\tau}) \sqrt{\frac{2mi}{\tau}} e^{-2\pi im \frac{z^2}{\tau}} \]
\[= \zeta_{2m}^{m,\mu} \theta_{m,1}(\tau, z) + \zeta_{2m}^{m,\mu} \theta_{m,1}(\tau, z) + \ldots + \zeta_{2m}^{(2m-1)\mu} \theta_{m,2m-1}(\tau, z). \]

By comparing the two equations (3.1) and (3.3), we conclude that
\[\sqrt{\frac{2mi}{\tau}} e^{-2\pi im \frac{z^2}{\tau}} \theta_{m,\mu}(\frac{1}{\tau}, \frac{z}{\tau}) = c_{0,\mu} \sum_{\lambda=0}^{2m-1} \zeta_{2m}^{m,\mu} \theta_{m,\lambda}(\tau, z). \]

(Step 2) Next, we need to determine the constant \(c_{0,\mu} \) in Equation (3.5) for each \(\mu, 0 \leq \mu \leq (2m-1) \). We shall use (3.5) twice to deduce that \(c_{0,\mu} = 1 \). By replacing \(z \) by \(\tau z \) and then \(\tau \) by \(-\frac{1}{\tau} \) in (3.5), we have
\[\theta_{m,\mu}(\tau, z) = c_{0,\mu} \sqrt{-\frac{1}{2mi} e^{-2\pi im \frac{z^2}{\tau}}} \sum_{\lambda=0}^{2m-1} \zeta_{2m}^{m,\mu} \theta_{m,\lambda}(\frac{1}{\tau}, \frac{z}{\tau}). \]
Since
\[\theta_{m,\lambda}(\tau, z) = \theta_{m,2m-\lambda}(\tau, z) \]
for each \(\lambda \), we have
\[\theta_{m,\mu}(\tau, z) = c_{0,\mu} \sqrt{-\frac{1}{2mi} e^{-2\pi im \frac{z^2}{\tau}}} \sum_{\lambda=0}^{2m-1} \zeta_{2m}^{m,\mu} \theta_{m,\lambda}(\frac{1}{\tau}, \frac{z}{\tau}). \]
Applying (3.5) again to the $\theta_{m,\lambda}(\frac{-1}{2}, \frac{z}{2})$ on the right-hand side, we derive

$$\theta_{m,\mu}(\tau, z) = \frac{c_{0,\mu}}{2m} \sum_{\nu=0}^{2m-1} \left(\sum_{\lambda=0}^{2m-1} c_{0,\lambda} \zeta_{2m}(\mu - \nu) \right) \theta_{m,\nu}(\tau, z).$$

Since the $\theta_{m,\nu}(\tau, z)$'s are linearly independent over \mathbb{C} (as can be seen from the Fourier series expansion), this implies that, for each μ and ν,

$$\frac{c_{0,\mu}}{2m} \sum_{\lambda=0}^{2m-1} c_{0,\lambda} \zeta_{2m}(\mu - \nu) = \delta_{\mu,\nu}.$$

Here $\delta_{\mu,\nu}$ denotes the Kronecker delta function. Taking $\mu = \nu$ and setting $\alpha = \sum_{\lambda=0}^{2m-1} c_{0,\lambda}$, we have $c_{0,0}^2 = 1$. In particular, the $c_{0,\mu}$ is independent of μ. It follows that $\alpha = 2m c_{0,0}$ and $c_{0,0}^2 = 1$.

(Step 3) The positivity of $c_{0,0}$ can be seen as follows: looking at the Fourier series expansion we note that $\theta_{m,\mu}(it, 0) > 0$ for any real number $t > 0$ and for every μ. So in the functional equation

$$\sqrt{\frac{2m}{t}} \theta_{m,0}(\frac{it}{t}, 0) = c_{0,0}(\theta_{m,0}(it, 0) + \theta_{m,1}(it, 0) + \ldots + \theta_{m,2m-1}(it, 0)),$$

everything except $c_{0,0}$ is positive. This implies that $c_{0,0} > 0$. By (Step 2) we conclude that $c_{0,0} = 1$. This ends our proof.

ACKNOWLEDGEMENT

The second-named author thanks Professor YoungJu Choie and POSTECH for their hospitality during his stay at Pohang, September, 2003 – February, 2004. We both would like to thank the referee for informing us of the related theta series results in [3].

REFERENCES

DEPARTMENT OF MATHEMATICS, POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY, POHANG, 790-784, KOREA
E-mail address: yjc@postech.ac.kr

DEPARTMENT OF MATHEMATICS, KYUSHU UNIVERSITY, HAKOZAKI, FUKUOKA, 812-8581, JAPAN
E-mail address: taguchi@math.kyushu-u.ac.jp

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use