The homological determinant of quantum groups of type $A$
HTML articles powered by AMS MathViewer
- by Phùng Hồ Hai PDF
- Proc. Amer. Math. Soc. 133 (2005), 1897-1905 Request permission
Abstract:
Let $R$ be a Hecke symmetry depending algebraically on a parameter $q\in \mathbb {C}$. We show that the homology of the Koszul complex associated with $R$ is one-dimensional when $q$ is not a root of unity. A generator of this homology group then induces the homological determinant of the quantum group associated with $R$.References
- P. Deligne, Catégories tensorielles, Mosc. Math. J. 2 (2002), no. 2, 227–248 (French, with English summary). Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR 1944506, DOI 10.17323/1609-4514-2002-2-2-227-248
- Richard Dipper and Gordon James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), no. 1, 20–52. MR 812444, DOI 10.1112/plms/s3-52.1.20
- Richard Dipper and Gordon James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987), no. 1, 57–82. MR 872250, DOI 10.1112/plms/s3-54.1.57
- Eugène Cremmer and Jean-Loup Gervais, The quantum group structure associated with nonlinearly extended Virasoro algebras, Comm. Math. Phys. 134 (1990), no. 3, 619–632. MR 1086746, DOI 10.1007/BF02098449
- D. I. Gurevich, Algebraic aspects of the quantum Yang-Baxter equation, Algebra i Analiz 2 (1990), no. 4, 119–148 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 4, 801–828. MR 1080202
- Phung Ho Hai, Koszul property and Poincaré series of matrix bialgebras of type $A_n$, J. Algebra 192 (1997), no. 2, 734–748. MR 1452685, DOI 10.1006/jabr.1996.6918
- Phung Ho Hai, Poincaré series of quantum spaces associated to Hecke operators, Acta Math. Vietnam. 24 (1999), no. 2, 235–246. MR 1710780
- Phung Ho Hai, On matrix quantum groups of type $A_n$, Internat. J. Math. 11 (2000), no. 9, 1115–1146. MR 1809304, DOI 10.1142/S0129167X00000581
- Phùng H\grcf{o} Hái, Splitting comodules over Hopf algebras and application to representation theory of quantum groups of type $A_{0|0}$, J. Algebra 245 (2001), no. 1, 20–41. MR 1868181, DOI 10.1006/jabr.2001.8841
- Phùng H\grcf{o} Hái, The integral on quantum supergroups of type $A_{R|S}$, Asian J. Math. 5 (2001), no. 4, 751–769. MR 1913820, DOI 10.4310/AJM.2001.v5.n4.a9
- Michio Jimbo, A $q$-analogue of $U({\mathfrak {g}}{\mathfrak {l}}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252. MR 841713, DOI 10.1007/BF00400222
- Richard G. Larson and Jacob Towber, Two dual classes of bialgebras related to the concepts of “quantum group” and “quantum Lie algebra”, Comm. Algebra 19 (1991), no. 12, 3295–3345. MR 1135629, DOI 10.1080/00927879108824320
- V. V. Lyubashenko, Hopf algebras and vector-symmetries, Uspekhi Mat. Nauk 41 (1986), no. 5(251), 185–186 (Russian). MR 878344
- Volodymyr Lyubashenko and Anthony Sudbery, Quantum supergroups of $\textrm {GL}(n|m)$ type: differential forms, Koszul complexes, and Berezinians, Duke Math. J. 90 (1997), no. 1, 1–62. MR 1478542, DOI 10.1215/S0012-7094-97-09001-3
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Shahn Majid and Martin Markl, Glueing operation for $R$-matrices, quantum groups and link-invariants of Hecke type, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 1, 139–166. MR 1356165, DOI 10.1017/S0305004100074041
- Yuri I. Manin, Gauge field theory and complex geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 289, Springer-Verlag, Berlin, 1988. Translated from the Russian by N. Koblitz and J. R. King. MR 954833
- Mitsuhiro Takeuchi and D. Tambara, A new one-parameter family of $2\times 2$ matrix bialgebras, Hokkaido Math. J. 21 (1992), no. 3, 405–419. MR 1191027, DOI 10.14492/hokmj/1381413719
Additional Information
- Phùng Hồ Hai
- Affiliation: Institute of Mathematics, P.O. Box 631, 10000 Boho, Hanoi, Vietnam
- Address at time of publication: FB6 Mathematik, Universität Duisburg–Essen, 45117 Essen, Germany
- Email: phung@math.ac.vn, ho-hai.phung@uni-essen.de
- Received by editor(s): September 19, 2002
- Received by editor(s) in revised form: February 22, 2004
- Published electronically: February 15, 2005
- Additional Notes: This work was supported by the National Program of Basic Sciences Research of Vietnam
- Communicated by: Martin Lorenz
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 1897-1905
- MSC (2000): Primary 16W30, 17B37; Secondary 17A45, 17A70
- DOI: https://doi.org/10.1090/S0002-9939-05-07739-7
- MathSciNet review: 2137853