Bases of the contact-order filtration of derivations of Coxeter arrangements
HTML articles powered by AMS MathViewer
- by Hiroaki Terao
- Proc. Amer. Math. Soc. 133 (2005), 2029-2034
- DOI: https://doi.org/10.1090/S0002-9939-05-07767-1
- Published electronically: January 21, 2005
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 136 (2008), 2639-2639.
Abstract:
In a recent paper, we constructed a basis for the contact-order filtration of the module of derivations on the orbit space of a finite real reflection group acting on an $\ell$-dimensional Euclidean space. Recently M. Yoshinaga constructed another basis for the contact-order filtration. In this note we give an explicit formula relating Yoshinaga’s basis to the basis we constructed earlier. The two bases turn out to be equal (up to a constant matrix).References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Boris Dubrovin, Geometry of $2$D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993) Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996, pp. 120–348. MR 1397274, DOI 10.1007/BFb0094793
- Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488, DOI 10.1007/978-3-662-02772-1
- Kyoji Saito, On a linear structure of the quotient variety by a finite reflexion group, Publ. Res. Inst. Math. Sci. 29 (1993), no. 4, 535–579. MR 1245441, DOI 10.2977/prims/1195166742
- Saito, K.: Finite reflection groups and related geometry (A motivation to the period mapping for primitive forms). preprint, 2000
- Hiroaki Terao, Multiderivations of Coxeter arrangements, Invent. Math. 148 (2002), no. 3, 659–674. MR 1908063, DOI 10.1007/s002220100209
- Terao, H.: The Hodge filtration and the contact-order filtration of derivations of Coxeter arrangements. preprint 2002 (math.CO/0205058)
- Masahiko Yoshinaga, The primitive derivation and freeness of multi-Coxeter arrangements, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 116–119. MR 1930214
- Masahiko Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent. Math. 157 (2004), no. 2, 449–454. MR 2077250, DOI 10.1007/s00222-004-0359-2
- Günter M. Ziegler, Multiarrangements of hyperplanes and their freeness, Singularities (Iowa City, IA, 1986) Contemp. Math., vol. 90, Amer. Math. Soc., Providence, RI, 1989, pp. 345–359. MR 1000610, DOI 10.1090/conm/090/1000610
Bibliographic Information
- Hiroaki Terao
- Affiliation: Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
- MR Author ID: 191642
- Received by editor(s): June 25, 2002
- Received by editor(s) in revised form: March 1, 2004
- Published electronically: January 21, 2005
- Additional Notes: The author was partially supported by the Grant-in-aid for scientific research (Nos. 14340018 and 13874005), the Ministry of Education, Sports, Science and Technology, Japan
- Communicated by: John R. Stembridge
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 2029-2034
- MSC (2000): Primary 32S22
- DOI: https://doi.org/10.1090/S0002-9939-05-07767-1
- MathSciNet review: 2099414