Relations approximated by continuous functions
HTML articles powered by AMS MathViewer
- by L’. Holá and R. A. McCoy
- Proc. Amer. Math. Soc. 133 (2005), 2173-2182
- DOI: https://doi.org/10.1090/S0002-9939-05-07793-2
- Published electronically: February 15, 2005
- PDF | Request permission
Abstract:
Let $X$ be a Tychonoff space, let $C(X)$ be the space of all continuous real-valued functions defined on $X$ and let $CL(X \times R)$ be the hyperspace of all nonempty closed subsets of $X\times R$. We prove the following result. Let $X$ be a locally connected, countably paracompact, normal $q$-space without isolated points, and let $F \in CL(X \times R)$. Then $F$ is in the closure of $C(X)$ in $CL(X \times R)$ with the locally finite topology if and only if $F$ is the graph of a cusco map. Some results concerning an approximation in the Vietoris topology are also given.References
- Gerald Beer, Topologies on closed and closed convex sets, Mathematics and its Applications, vol. 268, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1269778, DOI 10.1007/978-94-015-8149-3
- Gerald Beer, The approximation of real functions in the Hausdorff metric, Houston J. Math. 10 (1984), no. 3, 325–338. MR 763235
- Gerald Beer, On functions that approximate relations, Proc. Amer. Math. Soc. 88 (1983), no. 4, 643–647. MR 702292, DOI 10.1090/S0002-9939-1983-0702292-8
- Gerald Beer, On a theorem of Cellina for set valued functions, Rocky Mountain J. Math. 18 (1988), no. 1, 37–47. MR 935726, DOI 10.1216/RMJ-1988-18-1-37
- G. A. Beer, C. J. Himmelberg, K. Prikry, and F. S. Van Vleck, The locally finite topology on $2^X$, Proc. Amer. Math. Soc. 101 (1987), no. 1, 168–172. MR 897090, DOI 10.1090/S0002-9939-1987-0897090-2
- J. M. Borwein, Minimal CUSCOS and subgradients of Lipschitz functions, Fixed point theory and applications (Marseille, 1989) Pitman Res. Notes Math. Ser., vol. 252, Longman Sci. Tech., Harlow, 1991, pp. 57–81 (English, with French summary). MR 1122818
- Arrigo Cellina, A further result on the approximation of set-valued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 48 (1970), 412–416 (English, with Italian summary). MR 276935
- F. S. De Blasi, Characterizations of certain classes of semicontinuous multifunctions by continuous approximations, J. Math. Anal. Appl. 106 (1985), no. 1, 1–18. MR 780314, DOI 10.1016/0022-247X(85)90126-X
- F. S. De Blasi and J. Myjak, On continuous approximations for multifunctions, Pacific J. Math. 123 (1986), no. 1, 9–31. MR 834135, DOI 10.2140/pjm.1986.123.9
- G. Di Maio, Ľ. Holá, and J. Pelant, Properties related to the first countability of hyperspace topologies, Questions Answers Gen. Topology 19 (2001), no. 1, 139–157. MR 1815355
- Jens Peter Reus Christensen, Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set-valued mappings, Proc. Amer. Math. Soc. 86 (1982), no. 4, 649–655. MR 674099, DOI 10.1090/S0002-9939-1982-0674099-0
- R. Engelking, General Topology, Helderman, Berlin, 1989.
- Ľ. Holá, On relations approximated by continuous functions, Acta Univ. Carolin. Math. Phys. 28 (1987), no. 2, 67–72. 15th winter school in abstract analysis (Srní, 1987). MR 932741
- Ľubica Holá, Hausdorff metric on the space of upper semicontinuous multifunctions, Rocky Mountain J. Math. 22 (1992), no. 2, 601–610. MR 1180723, DOI 10.1216/rmjm/1181072752
- Masuo Hukuhara, Sur l’application semi-continue dont la valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 43–66 (French). MR 222856
- R. A. McCoy, Densely continuous forms in Vietoris hyperspaces, Set-Valued Anal. 8 (2000), no. 3, 267–271. MR 1790485, DOI 10.1023/A:1008773312587
- Robert A. McCoy and Ibula Ntantu, Topological properties of spaces of continuous functions, Lecture Notes in Mathematics, vol. 1315, Springer-Verlag, Berlin, 1988. MR 953314, DOI 10.1007/BFb0098389
- E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173–176. MR 177396, DOI 10.1007/BF02759940
- S. A. Naimpally and P. L. Sharma, Fine uniformity and the locally finite hyperspace topology, Proc. Amer. Math. Soc. 103 (1988), no. 2, 641–646. MR 943098, DOI 10.1090/S0002-9939-1988-0943098-9
Bibliographic Information
- L’. Holá
- Affiliation: Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia
- Email: hola@mat.savba.sk
- R. A. McCoy
- Affiliation: Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- Email: mccoy@math.vt.edu
- Received by editor(s): October 14, 2003
- Received by editor(s) in revised form: April 8, 2004
- Published electronically: February 15, 2005
- Communicated by: Alan Dow
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 2173-2182
- MSC (2000): Primary 54C35, 54B20, 54C08
- DOI: https://doi.org/10.1090/S0002-9939-05-07793-2
- MathSciNet review: 2137885