Existence and mapping properties of the wave operator for the Schrödinger equation with singular potential
HTML articles powered by AMS MathViewer
- by Vladimir Georgiev and Angel Ivanov
- Proc. Amer. Math. Soc. 133 (2005), 1993-2003
- DOI: https://doi.org/10.1090/S0002-9939-05-07854-8
- Published electronically: February 15, 2005
- PDF | Request permission
Abstract:
We consider the Schrödinger equation in three-dimensional space with small potential in the Lorentz space $L^{3/2,\infty }$ and we prove Strichartz-type estimates for the solution to this equation. Moreover, using Cook’s method, we prove the existence of the wave operator. In the last section we prove the equivalence between the homogeneous Sobolev spaces $\dot {H}^s$ and $\dot {H}^s_V$ in the case $0 \leq s < \frac {3}{2}$.References
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- Burq, N., Planchon, F., Stalker, J. and Shadi Tahvildar-Zadeh, Strichart estimates for the Wave and Schrödinger Equations with the Inverse-Square Potential , Preprint, 2002.
- Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), no. 1, 50–68. MR 1351643, DOI 10.1006/jfan.1995.1119
- Arne Jensen and Tosio Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J. 46 (1979), no. 3, 583–611. MR 544248
- J.-L. Journé, A. Soffer, and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math. 44 (1991), no. 5, 573–604. MR 1105875, DOI 10.1002/cpa.3160440504
- Arne Jensen and Shu Nakamura, Mapping properties of functions of Schrödinger operators between $L^p$-spaces and Besov spaces, Spectral and scattering theory and applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Tokyo, 1994, pp. 187–209. MR 1275402, DOI 10.2969/aspm/02310187
- Arne Jensen and Shu Nakamura, $L^p$-mapping properties of functions of Schrödinger operators and their applications to scattering theory, J. Math. Soc. Japan 47 (1995), no. 2, 253–273. MR 1317282, DOI 10.2969/jmsj/04720253
- Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. MR 1646048, DOI 10.1353/ajm.1998.0039
- Richard O’Neil, Convolution operators and $L(p,\,q)$ spaces, Duke Math. J. 30 (1963), 129–142. MR 146673
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- Rodnianski, I., Schlag, W.Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, preprint 2002.
- Yoshihiro Shibata and Koumei Tanaka, On the steady flow of compressible viscous fluid and its stability with respect to initial disturbance, J. Math. Soc. Japan 55 (2003), no. 3, 797–826. MR 1978223, DOI 10.2969/jmsj/1191419003
- Barry Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447–526. MR 670130, DOI 10.1090/S0273-0979-1982-15041-8
- Eberhard Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York, 1986. Fixed-point theorems; Translated from the German by Peter R. Wadsack. MR 816732, DOI 10.1007/978-1-4612-4838-5
Bibliographic Information
- Vladimir Georgiev
- Affiliation: Dipartimento di Matematica, Università di Pisa, Via Buonarroti No.2, 56127 - Pisa, Italy
- MR Author ID: 72510
- Email: georgiev@dm.unipi.it
- Angel Ivanov
- Affiliation: Dipartimento di Matematica, Università di Pisa, Via Buonarroti No.2, 56127 - Pisa, Italy
- Email: ivanov@mail.dm.unipi.it
- Received by editor(s): February 16, 2004
- Published electronically: February 15, 2005
- Additional Notes: The authors were partially supported by the Research Training Network (RTN) HYKE, financed by the European Union, contract number: HPRN-CT-2002-00282.
- Communicated by: Christopher D. Sogge
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 1993-2003
- MSC (2000): Primary 35J10, 35P25, 35B45
- DOI: https://doi.org/10.1090/S0002-9939-05-07854-8
- MathSciNet review: 2137865