A reduction of the Jacobian Conjecture to the symmetric case
HTML articles powered by AMS MathViewer
- by Michiel de Bondt and Arno van den Essen
- Proc. Amer. Math. Soc. 133 (2005), 2201-2205
- DOI: https://doi.org/10.1090/S0002-9939-05-07570-2
- Published electronically: March 4, 2005
- PDF | Request permission
Abstract:
The main result of this paper asserts that it suffices to prove the Jacobian Conjecture for all polynomial maps of the form $x+H$, where $H$ is homogeneous (of degree 3) and $JH$ is nilpotent and symmetric. Also a 6-dimensional counterexample is given to a dependence problem posed by de Bondt and van den Essen (2003).References
- Hyman Bass, Edwin H. Connell, and David Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287–330. MR 663785, DOI 10.1090/S0273-0979-1982-15032-7
- Michiel de Bondt and Arno van den Essen, Nilpotent symmetric Jacobian matrices and the Jacobian conjecture, J. Pure Appl. Algebra 193 (2004), no. 1-3, 61–70. MR 2076378, DOI 10.1016/j.jpaa.2004.03.003
- M. de Bondt and A. van den Essen, Nilpotent symmetric Jacobian matrices and the Jacobian Conjecture II, Pure Appl. Algebra, 196 (2005), 135-148.
- Anna Cima, Armengol Gasull, and Francesc Mañosas, The discrete Markus-Yamabe problem, Nonlinear Anal. 35 (1999), no. 3, Ser. A: Theory Methods, 343–354. MR 1643454, DOI 10.1016/S0362-546X(97)00715-3
- Arno van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, vol. 190, Birkhäuser Verlag, Basel, 2000. MR 1790619, DOI 10.1007/978-3-0348-8440-2
- Arno van den Essen and Sherwood Washburn, The Jacobian conjecture for symmetric Jacobian matrices, J. Pure Appl. Algebra 189 (2004), no. 1-3, 123–133. MR 2038568, DOI 10.1016/j.jpaa.2003.10.020
- E. Hubbers, The Jacobian Conjecture: Cubic homogeneous maps in Dimension Four, Masters’s thesis, University of Nijmegen, 1994.
- Gary Meisters, Polyomorphisms conjugate to dilations, Automorphisms of affine spaces (Curaçao, 1994) Kluwer Acad. Publ., Dordrecht, 1995, pp. 67–87. MR 1352691
- G. Meng, Legendre Transform, Hessian Conjecture and Tree Formula, http://front.math.ucdavis.edu/math-ph/0308035.
- C. Olech, On the Markus-Yamabe stability conjecture, pp. 127-137 in Proc. of the Intern. Meeting on Ordinary Differential Equations and their Applications, University of Florence, 1995.
- K. Rusek, Polynomial Automorphisms, preprint 456, Inst. of Math. Polish Acad. of Sciences, IMPAN, Warsaw, 1989.
- David Wright, The Jacobian conjecture: linear triangularization for cubics in dimension three, Linear and Multilinear Algebra 34 (1993), no. 2, 85–97. MR 1334679, DOI 10.1080/03081089308818214
- A. Yagzhev, On Keller’s problem, Siberian Math. J., 21 (1980), 747-754.
Bibliographic Information
- Michiel de Bondt
- Affiliation: Department of Mathematics, Radboud University of Nijmegen, Postbus 9010, 6500 GL Nijmegen, The Netherlands
- Email: debondt@math.kun.nl
- Arno van den Essen
- Affiliation: Department of Mathematics, Radboud University of Nijmegen, Postbus 9010, 6500 GL Nijmegen, The Netherlands
- Email: essen@math.kun.nl
- Received by editor(s): June 30, 2003
- Published electronically: March 4, 2005
- Communicated by: Bernd Ulrich
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 2201-2205
- MSC (2000): Primary 14R15, 14R10
- DOI: https://doi.org/10.1090/S0002-9939-05-07570-2
- MathSciNet review: 2138860