Compact hyperbolic 4-manifolds of small volume
HTML articles powered by AMS MathViewer
- by Marston Conder and Colin Maclachlan
- Proc. Amer. Math. Soc. 133 (2005), 2469-2476
- DOI: https://doi.org/10.1090/S0002-9939-05-07634-3
- Published electronically: March 14, 2005
- PDF | Request permission
Abstract:
We prove the existence of a compact non-orientable hyperbolic 4-manifold of volume $32\pi ^{2}/3$ and a compact orientable hyperbolic 4-manifold of volume $64\pi ^{2}/3$, obtainable from torsion-free subgroups of small index in the Coxeter group $[5,3,3,3]$. At the time of writing these are the smallest volumes of any known compact hyperbolic 4-manifolds.References
- M. Belolipetsky, On volumes of arithmetic quotients of $\textrm {SO}(1,n)$, preprint (arXiv:math.NT/ 0306423).
- Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. MR 1219310, DOI 10.1007/978-3-642-58158-8
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- Chun Cao and G. Robert Meyerhoff, The orientable cusped hyperbolic $3$-manifolds of minimum volume, Invent. Math. 146 (2001), no. 3, 451–478. MR 1869847, DOI 10.1007/s002220100167
- Ted Chinburg, Eduardo Friedman, Kerry N. Jones, and Alan W. Reid, The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), no. 1, 1–40. MR 1882023
- H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 4th ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 14, Springer-Verlag, Berlin-New York, 1980. MR 562913
- Michael W. Davis, A hyperbolic $4$-manifold, Proc. Amer. Math. Soc. 93 (1985), no. 2, 325–328. MR 770546, DOI 10.1090/S0002-9939-1985-0770546-7
- Brent Everitt, Coxeter groups and hyperbolic manifolds, Math. Ann. 330 (2004), no. 1, 127–150. MR 2091682, DOI 10.1007/s00208-004-0543-0
- B. Everitt and C. Maclachlan, Constructing hyperbolic manifolds, Computational and geometric aspects of modern algebra (Edinburgh, 1998) London Math. Soc. Lecture Note Ser., vol. 275, Cambridge Univ. Press, Cambridge, 2000, pp. 78–86. MR 1776768, DOI 10.1017/CBO9780511600609.007
- Michael Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5–99 (1983). MR 686042
- N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, and S. T. Tschantz, Commensurability classes of hyperbolic Coxeter groups, Linear Algebra Appl. 345 (2002), 119–147. MR 1883270, DOI 10.1016/S0024-3795(01)00477-3
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- S. V. Matveev and A. T. Fomenko, Isoenergetic surfaces of Hamiltonian systems, the enumeration of three-dimensional manifolds in order of growth of their complexity, and the calculation of the volumes of closed hyperbolic manifolds, Uspekhi Mat. Nauk 43 (1988), no. 1(259), 5–22, 247 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 1, 3–24. MR 937017, DOI 10.1070/RM1988v043n01ABEH001554
- John G. Ratcliffe and Steven T. Tschantz, The volume spectrum of hyperbolic 4-manifolds, Experiment. Math. 9 (2000), no. 1, 101–125. MR 1758804
- John G. Ratcliffe and Steven T. Tschantz, On the Davis hyperbolic 4-manifold, Topology Appl. 111 (2001), no. 3, 327–342. MR 1814232, DOI 10.1016/S0166-8641(99)00221-7
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532830
- W. Thurston, The Geometry and Topology of Three-Manifolds, Notes from Princeton University, 1979.
- È. B. Vinberg, Hyperbolic groups of reflections, Uspekhi Mat. Nauk 40 (1985), no. 1(241), 29–66, 255 (Russian). MR 783604
- E. Vinberg, Discrete groups in Lobachevskii spaces generated by reflections, Math. USSR-Sb. 1 (1967), 429–444.
- J. Weeks, Hyperbolic structures on 3-manifolds, Ph.D. Thesis, Princeton University 1985.
Bibliographic Information
- Marston Conder
- Affiliation: Department of Mathematics, University of Auckland, Private Bag 92019 Auckland, New Zealand
- MR Author ID: 50940
- ORCID: 0000-0002-0256-6978
- Email: m.conder@auckland.ac.nz
- Colin Maclachlan
- Affiliation: Department of Mathematical Sciences, University of Aberdeen, Aberdeen AB24 3UE, Scotland, United Kingdom
- Email: c.maclachlan@maths.abdn.ac.uk
- Received by editor(s): August 29, 2003
- Published electronically: March 14, 2005
- Additional Notes: This research was supported by grants from the N.Z. Marsden Fund (grant no. UOA 124) and the N.Z. Centres of Research Excellence Fund (grant no. UOA 201)
- Communicated by: Linda Keen
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 2469-2476
- MSC (2000): Primary 57M50, 20F55; Secondary 51M20, 20B40
- DOI: https://doi.org/10.1090/S0002-9939-05-07634-3
- MathSciNet review: 2138890