ALMOST EVERYWHERE CONVERGENCE OF SERIES IN L^1

CIPRIAN DEMETER

(Communicated by Andreas Seeger)

Abstract. We answer positively a question of J. Rosenblatt (1988), proving the existence of a sequence (c_i) with $\sum_{i=1}^{\infty} |c_i| = \infty$, such that for every dynamical system (X, Σ, m, T) and $f \in L^1(X)$, $\sum_{i=1}^{\infty} c_i f(T^i x)$ converges almost everywhere. A similar result is obtained in the real variable context.

1. Introduction

Let T be a (not necessarily invertible) measure preserving transformation on the probability space (X, Σ, m). Given a sequence (c_i) we will state some mild conditions under which the series $\sum_{i=1}^{\infty} c_i f(T^i x)$ converges almost everywhere for every $f \in L^1(X)$. In [8] Rosenblatt proved that if $r_i(\omega)$ denotes the Rademacher sequence, then for almost every choice of ω one gets convergence of the above series with $c_i = r_i(\omega)$, for every $f \in L^p(X)$, $p > 1$. As a natural question, in the end of [8] it is asked whether there exists a sequence (c_i) with $\sum_{i=1}^{\infty} |c_i| = \infty$, such that for every $f \in L^1(X)$, $\sum_{i=1}^{\infty} c_i f(T^i x)$ converges almost everywhere. This question is also motivated by the fact that if one considers the same series associated with an invertible T and a two sided sequence $(c_i)_{i=-\infty}^{\infty}$, then the ergodic Hilbert Transform is an example for which the convergence is known to hold.

The purpose of this paper is twofold. On the one hand it gives a positive answer to the question above, as a consequence of Theorem 1 from [7]. On the other hand, the proof of this theorem (as presented in [7]) is quite long and makes use of the result concerning the convergence of the martingale transform from [4], which does not allow it to be extended to a larger setting. We will give a rather short proof here, based on a different type of argument, which will allow us in turn to prove a slightly more general result.

Given a sequence $C = (c_i)$ we will use the following notation:

$$A_{k,C} f(x) = \sum_{i=2^{k+1}}^{2^{k+1}+1} c_i f(T^i x).$$

When the sequence C is clear from the context, $A_k f(x)$ will be used instead.

Theorem 1.1. Let (c_i) be a sequence of positive numbers with the following properties:

(a) The sequence (ic_i) is bounded.
(b) The sequence \((c_i)\) is nonincreasing.
(c) The sequence \(s_k = \sum_{i=2^k+1}^{2^{k+1}} c_i\) satisfies \(\sum_{k=0}^{\infty} |s_{k+1} - s_k| < \infty\).

Then for every bounded sequence \((v_k)\), the operators

\[
S_n f(x) = \sum_{k=1}^{n} v_k (A_k f(x) - A_{k-1} f(x))
\]

converge a.e. for \(f \in L^1(X)\), and converge in norm for \(f \in L^p(X), 1 < p < \infty\).

Remark 1.2. This theorem remains valid if \(2^k\) is replaced with an arbitrary lacunary sequence in the definition of \(A_k\), and the proof does not suffer any serious modification. When \(c_i = \frac{1}{2 \log 2 \log i}\), one recovers the result of Theorem 1 from [7].

From the above, one immediately gets the following:

Theorem 1.3. Let \((c_i)\) be a sequence of positive numbers with the following properties:
(a) The sequence \((ic_i)\) converges to 0.
(b) The sequence \((c_i)\) is nonincreasing.
(c) The sequence \(s_k = \sum_{i=2^k+1}^{2^{k+1}} c_i\) satisfies \(\sum_{k=1}^{\infty} |s_{k+1} - s_k| < \infty\).

Define the sequence \(d_i = c_i(-1)^k\), when \(2^k + 1 \leq i \leq 2^{k+1}\). Then the series

\[
S_n f(x) = \sum_{i=1}^{n} d_i f(T^i x)
\]

converges a.e. for every \(f \in L^1(X)\).

Sequences such as \(\frac{(-1)^{i \log (i+1)}}{i \log i}\), \(\frac{(-1)^{i \log (i+1)}}{i \log \log i}\), etc. in which the logarithmic form is expanded satisfy the requirements (a), (b) and (c) of Theorem 1.3. This proves the following corollary:

Corollary 1.4. There exists a nonsummable sequence \((c_i)\) such that for every \(f \in L^1(X)\), \(\sum_{i=1}^{\infty} c_i f(T^i x)\) converges almost everywhere.

Remark 1.5. An interesting question is whether there exists a choice of signs \(r_i \in \{-1, 1\}\) such that the following modulated one-sided Hilbert Transform

\[
S f(x) = \sum_{i=1}^{\infty} r_i f(T^i x)
\]

converges a.e. for \(f \in L^1(X)\). It appears that this question cannot be addressed by the techniques employed in this paper, and here is the reason why: the proof (based on the machinery of Benedek, Calderón and Panzone) of the weak \((1,1)\) maximal inequality for \(\sup_n |S_n|\) in Theorem 1.1 relies heavily on the fact that the summation index for \(A_k\) runs through a block of lacunary growth; on the other hand, a series such as

\[
S f(x) = \sum_{k=1}^{\infty} (-1)^k \sum_{i=n_k+1}^{n_{k+1}} f(T^i x) \frac{1}{i}
\]

diverges for constant functions when \((n_k)\) is lacunary.
The real variable analogues of the above theorems also hold. For a given \(\psi \) defined on \((0, \infty)\) we will use the notation
\[
D_k, \psi f(x) = \int_{2^{k-1}}^{2^k} \psi(y)f(x-y)dy.
\]
Again when \(\psi \) is clear from the context, \(D_k f(x) \) will be used instead.

Theorem 1.6. Let \(\psi : (0, \infty) \to [0, \infty) \) be a function satisfying the following:

(a) The function \(x\psi(x) \) is bounded.

(b) The function \(\psi \) is nonincreasing.

(c) The sequence \(s_k = \int_{1/2^{k+1}}^{1/2^k} \psi(x)dx \) satisfies \(\sum_{k=1}^{\infty} |s_{k+1} - s_k| < \infty \).

Then for every bounded sequence \(\{v_k\} \), the operators
\[
S_n f(x) = \sum_{k=1}^{n} v_k (D_k f(x) - D_{k-1} f(x))
\]
converge a.e. for \(f \in L^1(\mathbb{R}) \), and converge in norm for \(f \in L^p(\mathbb{R}) \), \(1 < p < \infty \).

This immediately gives

Theorem 1.7. Let \(\psi : (0, \infty) \to [0, \infty) \) be a function satisfying the following:

(a) The function \(\lim_{x \to 0} x\psi(x) = 0 \).

(b) The function \(\psi \) is nonincreasing.

(c) The sequence \(s_k = \int_{1/2^{k+1}}^{1/2^k} \psi(x)dx \) satisfies \(\sum_{k=1}^{\infty} |s_{k+1} - s_k| < \infty \).

Define the function \(\theta(x) = (-1)^k \psi(x) \), when \(x \in \left[\frac{1}{2^{k+1}}, \frac{1}{2^k}\right) \). Then the improper integral
\[
I = \int_0^{\infty} \theta(y) f(x-y)dy
\]
converges for a.e. \(x \), for every \(f \in L^1(\mathbb{R}) \).

Remark 1.8. Note again that functions such as \(\psi(x) = \frac{1}{x \log x} \) or \(\psi(x) = \frac{1}{x \log \log x} \) satisfy the requirements of Theorem 1.7. Like in the ergodic theoretic setting, it remains open whether there exists a function \(\theta \) with \(|\theta(x)| = \frac{1}{x} \) for each \(x \in (0, \infty) \), which satisfies the conclusion of Theorem 1.7.

Remark 1.9. An example of a function \(\theta \notin L_1[0, \infty) \) such that
\[
I = \int_0^{\infty} \theta(y) f(x-y)dy
\]
converges for a.e. \(x \), for every \(f \in L^1(\mathbb{R}) \), appears in [1]. The kernel there, \(\theta(x) = \chi_{(0, \infty)}(x) \cdot \frac{1}{x} \frac{\sin(\log x)}{\log x} \), is a smooth variant of the one we are using here.

2. **Proofs**

We will use the fundamental results from [6] to get a maximal inequality for the operator \(S^* f(x) = \sup_s S_s f(x) \). Since these results are stated in the real variable context, we need to transfer them in the ergodic theoretic setting. For a measure \(\mu \) on \(\mathbb{Z} \) define the Borel measure \(w \) on \(\mathbb{R} \) by the formula \(w = \mu * \chi_{(0,1)} \) where
\[
\mu \ast \chi_{(0,1)}(x) = \int_{\mathbb{Z}} \chi_{(0,1)}(x-y)d\mu(y) = \sum_{k=-\infty}^{\infty} \chi_{(k,k+1)}(x)\mu(k).
\]
In the following, for any Borel measure w on \mathbb{R} we will denote by $|w| = w^+ - w^-$ the total variation of w while $||w||_1$ will stand for the quantity $|w|(\mathbb{R})$. The same notation will be used for measures on \mathbb{Z}. Given a sequence (w_k) of Borel measures on \mathbb{R}, the associated maximal operator is defined as $w^*(\psi) = \sup_k |w_k * \psi|$, for each $\psi : \mathbb{R} \to \mathbb{R}$. The Dirac mass concentrated on $\{i\}$ will be denoted by δ_i. The following two lemmas are essentially contained in [2], but the proofs are slightly different in this context, so we will sketch them.

Lemma 2.1. Assume that (μ_k) is a sequence of measures on \mathbb{Z} satisfying

\[
|\hat{\mu}_k(\gamma)| \leq C 2^k |\gamma - 1| \tag{2.1}
\]

and

\[
|\hat{\mu}_k(\gamma)| \leq C (2^k |\gamma - 1|)^{-1}, \gamma \neq 1 \tag{2.2}
\]

for some constant C independent of k. Then for some constant C' we also have

\[
|\hat{w}_k(\xi)| \leq C' 2^k |\xi| \tag{2.3}
\]

and

\[
|\hat{w}_k(\xi)| \leq C'(2^k |\xi|)^{-1}, \xi \neq 0 \tag{2.4}
\]

where (w_k) are the corresponding measures on \mathbb{R}.

Proof. The proof immediately follows from the identity

\[
\hat{w}_k(\xi) = \hat{\mu}_k(2\pi i \xi) e^{2\pi i \xi} - 1, \xi \neq 0.
\]

\[\square\]

Lemma 2.2. Let (μ_k) be a sequence of measures on \mathbb{Z} satisfying

\[
\sum_{k=1}^{\infty} ||\mu_k - \mu_k * \delta_1||_1 < \infty, \tag{2.5}
\]

and let (w_k) denote the corresponding measures on \mathbb{R}. Define the integral operator

\[
T^*_{\mathbb{Z}} \phi(l) = \sup_k |T_{\mathbb{Z},k} \phi(l)|
\]

with

\[
T_{\mathbb{Z},k} \phi(l) = \sum_{i=1}^{k} \mu_i * \phi(l) \tag{2.6}
\]

and similarly the differential operator

\[
T^*_{\mathbb{R}} \psi(x) = \sup_k |T_{\mathbb{R},k} \psi(x)|
\]

with

\[
T_{\mathbb{R},k} \psi(x) = \sum_{i=1}^{k} w_i * \psi(x). \tag{2.7}
\]

Then

(i) if $T^*_{\mathbb{R}}$ is bounded in $L^p(\mathbb{R})$ for some $p > 1$, then $T^*_{\mathbb{Z}}$ is bounded in $l^p(\mathbb{Z})$;

(ii) if $T^*_{\mathbb{R}}$ satisfies a weak $(1,1)$ inequality, then so does $T^*_{\mathbb{Z}}$.

Proof. We will only prove (i), since the second assertion follows similarly. We have that

\[
\left\| \sup_k \left| \sum_{i=1}^{k} w_i * \psi \right| \right\|_p \leq C_p ||\psi||_p,
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
for all $\psi \in L^p(\mathbb{R})$. From here we can prove our result on $l^p(\mathbb{Z})$. Given $\phi \in l^p(\mathbb{Z})$, let

$$
\phi * \chi_{[0,1)} = \sum_{k=-\infty}^{\infty} \chi_{[k,k+1)}(k).
$$

Then $\phi * \chi_{[0,1)}$ is in $L^p(\mathbb{R})$ and in fact $\|\phi\|_{l^p(\mathbb{Z})} = \|\phi * \chi_{[0,1)}\|_{L^p(\mathbb{R})}$. By the maximal inequality above,

$$
\left\| \sup_k \left| \sum_{i=1}^{k} w_i \phi * \chi_{[0,1)} \right| \right\|_p \leq C_p \|\phi\|_p.
$$

All that remains to be proven now is that

$$
\left\| \sup_k \left| \sum_{i=1}^{k} \mu_i \phi * \chi_{[0,1)} \right| \right\|_p \leq C_p \left\{ \|\phi\|_p + \left\| \sup_k \left| \sum_{i=1}^{k} w_i \phi * \chi_{[0,1)} \right| \right\|_p \right\}.
$$

Note that

$$
\left\| \sup_k \left| \sum_{i=1}^{k} \mu_i \phi * \chi_{[0,1)} \right| \right\|_p \leq \left\| \sup_k \left| \sum_{i=1}^{k} w_i \phi * \chi_{[0,1)} \right| \right\|_p + \sum_{i=1}^{\infty} \left| \mu_i \phi * \chi_{[0,1)} - w_i \phi * \chi_{[0,1)} \right|_p.
$$

Now if $l \leq x < l + 1$ for some $l \in \mathbb{Z}$, say $x = l + \epsilon$, then

$$
w_i \phi * \chi_{[0,1)}(x) = \sum_{k} (1 - \epsilon) \mu_i(k - 1) \phi(l - k) + \sum_{k} \epsilon \mu_i(k) \phi(l - k),
$$

while

$$
\mu_i \phi * \chi_{[0,1)}(x) = \sum_{k} \mu_i(k) \phi(l - k).
$$

This immediately proves that

$$
|\mu_i \phi * \chi_{[0,1)}(x) - w_i \phi * \chi_{[0,1)}(x)| \leq |\mu_i - \mu_i \delta_1| * |\phi|_0,
$$

and hence

$$
|\mu_i \phi * \chi_{[0,1)} - w_i \phi * \chi_{[0,1)}|_p \leq ||(\mu_i - \mu_i \delta_1)| * |\phi||_p \leq ||\mu_i - \mu_i \delta_1||_1 ||\phi||_p.
$$

The result now follows from (2.5).

The main ingredient of our proofs is the following fundamental lemma:

Lemma 2.3. Let $du_k = f_k dx$ be a sequence of measures on \mathbb{R} and let $T_{\mathbb{R}}$ be as above. Assume the following are satisfied:

$$
\int_{|x|>2|y|} \sup_k \left| \sum_{i=1}^{k} (f_i(x - y) - f_1(x)) \right| dx \leq C',
$$

(2.9)

$$
|w_k|_1 < M,
$$

(2.10)

$$
|\tilde{w}_k(\xi)| \leq C'2^k|\xi|,
$$

(2.11)

$$
|\tilde{w}_k(\xi)| \leq C'(2^k|\xi|)^{-1}, \quad \xi \neq 0,
$$

(2.12)

$$
|w^*(\psi)|_2 \leq C' ||\psi||_2,
$$

(2.13)

$$
\text{supp}(w_k) \subset \{ x \in \mathbb{R} : |x| < 2^{k+1} \}.
$$
for some constants M and C' independent of k, y and ψ. Then T^*_k is bounded in $L^p(\mathbb{R})$ for $1 < p < \infty$ and satisfies a weak $(1, 1)$ inequality.

\begin{proof}

Conditions (2.9), (2.10), (2.11), (2.12) and (2.13) are the ones used by Duoandikoetxea and Rubio de Francia in Theorem E of [6]. Using their result, we have $\|T^*_k\|_2 \leq C$. This fact together with (2.8) are the conditions needed in Theorem 2 from [3], with $B_1 = \mathbb{R}$ and $B_2 = l^\infty$. The result follows immediately. \qed

Here is the proof of Theorem 1.1.

\begin{proof}

Without loss of generality we can assume that $\|(v_k)\|_{l^\infty} \leq 1$. Define the measures μ_k on \mathbb{Z} by

$$
\mu_k = v_k \left(\sum_{i=2^k+1}^{2^{k+1}} c_i \delta_i - \frac{s_k}{s_{k-1}} \sum_{i=2^{k-1}+1}^{2^k} c_i \delta_i \right),
$$

and let w_k denote the corresponding measures on \mathbb{R}. We will first show that the operator T^*_k associated to these measures is bounded in $L^p(\mathbb{R})$, $p > 1$, and satisfies a weak $(1, 1)$ maximal inequality, as a consequence of Lemma 2.3. Conditions (a) and (b) from Theorem 1.1 are easily seen to imply (2.9) and (2.13). Also, since $s_k \leq 2s_{k-1}$, (2.12) follows as a consequence of (a) and the boundedness of the Hardy-Littlewood maximal operator. In order to prove (2.10) and (2.11) it suffices (according to Lemma 2.1) to prove that $|\hat{\mu}_k(\gamma)| \leq C2^k|\gamma - 1|$ and $|\hat{\mu}_k(\gamma)| \leq C(2^k|\gamma - 1|)^{-1}, \gamma \neq 1$. But

$$
|\hat{\mu}_k(\gamma)| \leq \sum_{i=2^k+1}^{2^{k+1}} |c_i(\gamma^i - 1)| + \frac{s_k}{s_{k-1}} \sum_{i=2^{k-1}+1}^{2^k} |c_i(\gamma^i - 1)|
$$

$$
\leq \sum_{i=2^k+1}^{2^{k+1}} ic_i|\gamma - 1| + \frac{s_k}{s_{k-1}} \sum_{i=2^{k-1}+1}^{2^k} ic_i|\gamma - 1|
$$

$$
\leq C2^k|\gamma - 1|,
$$

while by using Abel’s summation, (a) and (b) we get

$$
|\hat{\mu}_k(\gamma)(\gamma - 1)| \leq \sum_{i=2^k+2}^{2^{k+1}} (c_i - c_{i-1}) \gamma^i + |c_{2^k+1} \gamma^{2^{k+1}+1} - c_{2^{k+1}} \gamma^{2^k+1}|
$$

$$
+ \sum_{i=2^{k-1}+2}^{2^k} (c_i - c_{i-1}) \gamma^i + |c_{2^k+1} \gamma^{2^k+1} - c_{2^{k-1}+1} \gamma^{2^{k-1}+1}|
$$

$$
\leq C2^{-k}.
$$

It only remains to prove (2.8). Obviously

$$
f_k(x) = v_k \left(\sum_{i=2^k+1}^{2^{k+1}} c_i \chi_{[i, i+1)}(x) - \frac{s_k}{s_{k-1}} \sum_{i=2^{k-1}+1}^{2^k} c_i \chi_{[i, i+1)}(x) \right).
$$

Fix a y. Note that since $f_k(x) = 0$ when $x < 2$, the integral in (2.8) is only over the set $\{x > 1\}$, so we can assume x is positive and hence $0 < x - y < x < 2(x - y)$. Moreover, for each such x there are at most 2 values of k such that $f_k(x) \neq f_k(x-y)$. Define the sets $D = \{x \in [1, \infty) : x > 4|y|\}$, $A_1 = \{x \in D : \exists k \geq 0 \text{ s.t. } 2^k + 1 \leq$
Since \(x, x - y < 2^{k+1} + 1 \) and \(A_2 = D \setminus A_1 \). Since \(4|y| < x \), it follows that any \(k \) that is used in the definition of \(A_1 \) must be greater than \(\log_2 |y| \). Note that if \(x \in A_1 \), then

\[
\sup_k \left\{ \sum_{i=1}^{k} (f_i(x - y) - f_i(x)) \right\} \leq 4|c[x - y] - c[x]| \leq 4|c[x] - |y| - 1 - c[x]| + 4|c[x] - |y| - c[x]|.
\]

Hence

\[
\int_{A_1} \sup_k \left\{ \sum_{i=1}^{k} (f_i(x - y) - f_i(x)) \right\} dx < 4 \sum_{i \geq |y| + 1} |c_i - |y| - 1 - c_i| + 4 \sum_{i \geq |y| + 1} |c_i - |y| - c_i| < C'_1 \quad \text{by (a) and (b)}.
\]

Consider now an \(x \in A_2 \). There will exist an \(l \in \mathbb{N} \) such that \(x - y < 2^l + 1 \leq x \), and from the same reasons described above, \(l \geq \log_2 |y| \). Note also that

\[
A_2 \subset \bigcup_{k \geq 0} [2^k + 1, 2^k + 1 + |y|)
\]

and

\[
\sup_k \left\{ \sum_{i=1}^{k} f_i(x) \right\} < 4c[x] < 4c_2.
\]

This implies that

\[
\int_{A_2} \sup_k \left\{ \sum_{i=1}^{k} f_i(x) \right\} dx < 4|y| \sum_{l > \log_2 |y|} c_2l \quad < C'_2 \quad \text{by (a)}.
\]

Similarly one finds that

\[
\int_{A_2} \sup_k \left\{ \sum_{i=1}^{k} f_i(x - y) \right\} dx < C'_3.
\]

This proves that (2.8) is satisfied with \(C' = C'_1 + C'_2 + C'_3 \).

Equation (2.24) is easily seen to be satisfied for the measures \(\mu_k \), based on (a) and (b). Hence according to Lemma 2.2, the operator \(T_Z^p \) is also bounded on \(\ell^1(\mathbb{Z}) \) and satisfies a weak \((1, 1)\) type inequality. Define now the operators \(S_{\mathbb{Z}, n}^p \) on \(\mathbb{Z} \) by

\[
S_{\mathbb{Z}, n}^p \phi(l) = \sum_{k=1}^{n} v_k \left(\sum_{i=2^k+1}^{2^{k+1}} c_i \phi(i + l) - \sum_{i=2^{k-1}+1}^{2^k} c_i \phi(i + l) \right).
\]

Note that

\[
S_{\mathbb{Z}}^p \phi(l) \leq T_{\mathbb{Z}}^p \phi(l) + \sum_{k=1}^{\infty} \left(\frac{s_k}{s_{k-1}} - 1 \right) \sum_{i=2^{k-1}+1}^{2^k} c_i \phi(l + i)
\]

\[
= T_{\mathbb{Z}}^p \phi(l) + M \phi(l).
\]

Since

\[
||M \phi||_1 \leq ||\phi||_1 \sum_{k=0}^{\infty} |s_{k+1} - s_k|,
\]
it follows immediately that S^*_Z is bounded in $l^p(Z)$, $p > 1$, and satisfies a weak $(1,1)$ maximal inequality. By using Calderón’s standard transfer principle, see for example [5], we get the same results for the ergodic operator S^*_Z of Theorem 1.1.

Condition (c) proves that $S_nf(x)$ converges a.e. for T invariant functions, while (a) and (b) prove the convergence for every coboundary $f(x) = g(Tx) - g(x)$. Since these functions span a dense subclass of $L^1(X)$, convergence on the whole $L^1(X)$ follows. The norm convergence follows as a consequence of the Dominated Convergence Theorem. □

Proof of Theorem 1.3. Note that (a) implies that

$$
\sup_{2^k+1 \leq j \leq 2^{k+1}} \left| \sum_{i=2^k+1}^j c_i f(T^i x) \right| = o(1) \frac{1}{2^{k+1}} \sum_{i=1}^{2^{k+1}} |f|(T^i x);
$$

hence

$$
\lim_{k \to \infty} \sup_{2^k+1 \leq j \leq 2^{k+1}} \left| \sum_{i=2^k+1}^j c_i f(T^i x) \right| = 0
$$

for a.e. x and all $f \in L^1(X)$. Using this, the conclusion of Theorem 1.3 follows now as an application of Theorem 1.1 with $v_k = (-1)^k$. □

The proofs of Theorems 1.6 and 1.7 are very similar. The argument is simpler in this case since the transfer lemmas 2.1 and 2.2 are no longer needed.

References

Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095-1555

E-mail address: demeter@math.ucla.edu