SEMIGLOBAL RESULTS FOR $\overline{\partial}$ ON A COMPLEX SPACE WITH ARBITRARY SINGULARITIES

JOHN ERIK FORNÆSS, NILS ØVRELID, AND SOPHIA VASSILIADOU

(Communicated by Mei-Chi Shaw)

ABSTRACT. We obtain some L^2-results for the $\overline{\partial}$ operator on forms that vanish to high order on the singular set of a complex space.

1. Introduction

Let X be a pure n-dimensional reduced Stein space, and let A be a lower-dimensional complex analytic subset with empty interior containing X_{sing}. Let Ω be an open relatively compact Stein domain in X and let $K = \overline{\Omega}^X$ be the holomorphic convex hull of $\overline{\Omega}$ in X. Since X is Stein and $K = \overline{K_X}$, K has a neighborhood basis of Oka-Weil domains in X ([8]). Let Ω_0 be an Oka-Weil neighborhood of K in X, $X_0 \subset \subset X$. Then X_0 can be realized as a holomorphic subvariety of an open polydisk in some \mathbb{C}^*. Set $\Omega^* = \Omega \setminus A$. Let d_A be the distance to A, relative to an embedding of X_0 in \mathbb{C}^*, and let $| |$ and dV denote the induced norm on $\Lambda^* T^* \Omega^*$, resp. the volume element (different embeddings of neighborhoods of $\overline{\Omega}$ in \mathbb{C}^* give rise to equivalent distance functions and norms). For a measurable (p, q)-form u on Ω^* let $||u||^2_{\Omega^*} := \int_{\Omega^*} |u|^2 d_A^{-n} dV$.

In this paper we address the question of whether we can solve the equation $\overline{\partial} u = f$ in Ω^* for a $\overline{\partial}$-closed (p, q)-form f on Ω^* that vanishes “to high order” on A. Our main result is the following theorem:

Theorem 1.1. Let X, Ω be as above. For every $N_0 \geq 0$, there exists $N \geq 0$ such that if f is a $\overline{\partial}$-closed (p, q)-form on Ω^*, $q > 0$, with $\|f\|_{N, \Omega} < \infty$, there is $v \in L^2_{p, q-1}(\Omega^*)$ solving $\overline{\partial} v = f$, with $\|v\|_{N_0, \Omega'} < \infty$ for every $\Omega' \subset \subset \Omega$. For each $\Omega' \subset \subset \Omega$, there is a solution of this kind satisfying $\|v\|_{N_0, \Omega'} \leq C \|f\|_{N, \Omega}$, where C is a positive constant that depends only on Ω', N, N_0.

When $A \cap \overline{\Omega}$ is a finite subset of $\overline{\Omega}$ with $b\Omega \cap A = \emptyset$, Ω is Stein and $\overline{\Omega}$ has a Stein neighborhood, we obtain the following corollary of Theorem 1.1:

Corollary 1.2. With N_0, N as in Theorem 1.1 and for f a $\overline{\partial}$-closed (p, q)-form on Ω^*, $q > 0$, with $\|f\|_{N, \Omega} < \infty$, there is a solution u of $\overline{\partial} u = f$ on Ω^* with $\|u\|_{N_0, \Omega} \leq c \|f\|_{N, \Omega}$, c independent of f. In other words, we obtain a weighted L^2 estimate for u on all of Ω.
Theorem 1.1 extends to the case when \(\Omega \) is just holomorphically convex and contains a maximal compact subvariety \(B \) that is contained in \(A \). It also extends to the case of \((p, q)\) forms on \(X^* \) with values in a holomorphic vector bundle \(E \) over \(X \). Theorem 1.1 and Corollary 1.2 can be used to construct analytic objects with prescribed behaviour on the maximal, positive-dimensional compact subvariety \(B \) of a holomorphically convex manifold. We also expect them to be useful in studying the obstructions to solving a \((p, q)\)-forms on \(\Omega \) with only "normal crossing singularities", i.e. near each \(x_0 \in \tilde{A} \) there are local holomorphic coordinates \((z_1, \ldots, z_n)\) in terms of which \(\tilde{A} \) is given by \(h(z) = z_1 \cdots z_m = 0 \), where \(1 \leq m \leq n \), \(ii) \pi : \tilde{X} \setminus \tilde{A} \to X \setminus A \) is a biholomorphism, \(iv) \pi \) is proper.

The existence of such a map follows from the fact that a) every reduced, complex space can be desingularized and, b) every reduced, closed complex subspace of a complex manifold admits an embedded desingularization (the exact statements and proofs can be found in [1], [2]).

Let \(\tilde{\Omega} := \pi^{-1}(\Omega) \). We give \(\tilde{X} \) a real analytic metric \(\sigma \) and we consider the corresponding distance function \(d_\sigma(x) = \text{dist}(x, \tilde{A}) \), volume element \(dV_\sigma \) and norms on \(\Lambda^* \tilde{X} \) and \(\Lambda^* \tilde{X}^* \). Let \(J \) denote the ideal sheaf of \(\tilde{A} \) in \(\tilde{X} \) and \(\Omega^p \) the sheaf of holomorphic \(p \) forms on \(\tilde{X} \). We introduce some auxiliary sheaves (denoted by \(L_{p,q} \)) on \(\tilde{X} \). For every open subset \(U \) of \(\tilde{X} \), let \(L_{p,q}(U) \) be

\[
L_{p,q}(U) := \{ u \in L^2_{p,q}(U); \, \overline{\partial} u \in L^2_{p,q+1}(U) \}
\]

and for each open subset \(V \subset U \), let \(r_U^V : L_{p,q}(U) \to L_{p,q}(V) \) be the obvious restriction maps. Then the map \(u \to \overline{\partial} u \) defines an \(\mathcal{O}_{\tilde{X}} \)-homomorphism \(\overline{\partial} : L_{p,q} \to L_{p,q+1} \) and the sequence

\[
0 \to \Omega^p \to L_{p,0} \to L_{p,1} \to \cdots \to L_{p,n} \to 0
\]

is exact by the local Poincaré lemma for \(\overline{\partial} \). Since each \(L_{p,q} \) is closed under multiplication by smooth cut-off functions we have a fine resolution of \(\Omega^p \). In the same way, since \(J \) is locally generated by one function, then the sequence

\[
0 \to J^k \Omega^p \to J^k L_{p,0} \to \cdots \to J^k L_{p,n} \to 0
\]

is a fine resolution of \(J^k \Omega^p \). Here, \(u \in (L_j \Omega^p)_x \) if it can be locally written as \(h^k u_0 \) where \(h \) generates \(J_x \) and \(u_0 \in (L_{p,q})_x \). So we can interpret the sheaf cohomology groups \(H^q(\tilde{\Omega}, (J^k \Omega^p)|_a) \) as

\[
H^q(\tilde{\Omega}, (J^k \Omega^p)|_a) \cong \frac{\ker(\overline{\partial} : J^k L_{p,q}(\tilde{\Omega}) \to J^k L_{p,q+1}(\tilde{\Omega}))}{\text{Im}(\overline{\partial} : J^k L_{p,q-1}(\tilde{\Omega}) \to J^k L_{p,q}(\tilde{\Omega}))}.
\]
Inspired by Grauert’s Satz 1, Section 4 in [3] (Grauert’s result corresponds to the case where \(A \) is a finite set), we were led to the vanishing of a canonical morphism between certain sheaf cohomology groups of the above type. More precisely we were able to show the following:

Proposition 1.3. For \(q > 0 \) and \(k \geq 0 \) given, there exists a natural number \(\ell, \ell \geq k \), such that the map

\[
i_* : H^q(\tilde{\Omega}, J^\ell \Omega^p) \to H^q(\tilde{\Omega}, J^k \Omega^p),
\]

induced by the inclusion \(i : J^\ell \Omega^p \to J^k \Omega^p \), is the zero map.

Proposition 1.3 will play a key role in the proof of Theorem 1.1. Here is an outline for the proof of this theorem. Given \(N_0 \) we shall choose appropriately \(k, N \). Starting with an \(f \) as in Theorem 1.1 we shall show that the pullback \(\pi^* f \) satisfies

\[
\int_\tilde{\Omega} |\pi^* f|^2 \sigma^{-N_1} d\tilde{V}_\sigma \leq C \int_{\tilde{\Omega}^*} |f|^2 \sigma^{-N} dV,
\]

for a suitable \(0 < N_1 < N \) and \(\tilde{\Omega} \pi^* f = 0 \) on \(\tilde{\Omega} \).

Using (2) and the way we have chosen \(N, k \) we can show that \(\pi^* f \in J^\ell L_{p,q}(\tilde{\Omega}) \). By Proposition 1.3, this will imply that the equation \(\tilde{\Omega} v = \pi^* f \) has a solution in \(J^k L_{p,q-1}(\tilde{\Omega}) \). Since \(|h(x)| \leq C d_{\tilde{x}}(x) \) on compacts in the set where \(h \) generates \(J \), it will follow that

\[
\int_{\tilde{\Omega}^*} |v|^2 \sigma^{-2k} d\tilde{V}_\sigma < \infty,
\]

where \(\tilde{\Omega} = \pi^{-1}(\Omega)' \) and \(\Omega' \subset \Omega \). Then \((\pi^{-1})^* v = f \) on \(\Omega^* \) and the final step will be to show that

\[
\int_{\Omega^*} |(\pi^{-1})^* v|^2 \sigma^{-N_0} dV \leq C \int_{\tilde{\Omega}^*} |v|^2 \sigma^{-2k} d\tilde{V}_\sigma.
\]

The paper is organized as follows: In section 2 we prove Proposition 1.3. Section 3 contains the estimates for the pullback of forms under \(\pi \) and \(\pi^* \). In Section 4 we prove Theorem 1.1. The proof of Corollary 1.2 is contained in section 5. Finally in section 6 we discuss some generalizations of Theorem 1.1 and Corollary 1.2.

2. **Proof of Proposition 1.3**

Following Grauert [5], we consider more generally the coherent analytic sheaves \(\mathcal{S} \) on \(\tilde{X} \) that are torsion free i.e. sheaves with the property

\[
T(\mathcal{S})_x = 0 \quad \text{for all} \quad x \in \tilde{X},
\]

where \(T(\mathcal{S})_x = \{ g_x \in \mathcal{S}_x : \ f_x \cdot g_x = 0 \quad \text{for some} \ f_x \neq 0, \ f_x \in \mathcal{O}_x \} \).

We shall show (Lemma 2.1) that when \(\mathcal{S} \) is coherent and torsion free and \(i : J^l \mathcal{S} \to \mathcal{S} \) is the inclusion homomorphism, then the induced map \(i_{\tilde{\Omega},*} : H^q(\tilde{\Omega}, J^l \mathcal{S}) \to H^q(\tilde{\Omega}, \mathcal{S}) \) is zero when \(q > 0 \) and \(l \) is big enough. In order to exploit the idea that analytic sheaf cohomology on \(\Omega \) is concentrated over \(\tilde{A} \), the exceptional set of the resolution, we need to introduce the higher direct image sheaves, denoted by \(R^p pi_* \mathcal{S} \), of an analytic sheaf \(\mathcal{S} \) on \(\tilde{X} \), \(q \geq 0 \) and recall some basic facts about them. For \(q \geq 0 \) and \(\mathcal{S} \) an \(\mathcal{O}_{\tilde{X}} \)-module, the higher direct image sheaves of \(\mathcal{S} \) are the sheaves...
on X, associated to the presheaf

$$P : U \to H^q(\pi^{-1}(U), S),$$

where U is open in X.

When $\phi : S \to S'$ is an O_X-homomorphism the induced maps $\phi_* : H^q(\pi^{-1}(U), S) \to H^q(\pi^{-1}(U), S')$, U open in X, determine a sheaf homomorphism $\phi : R^q\pi_* S \to R^q\pi_* S'$ on X. For future reference, we recall the O_X-module structure on $R^q\pi_* S$. Given U an open subset of X, $f \in O_X(U)$, we define a map $f_U \cdot : S_{\pi(U)} \to S_{\pi(U)}$ described by $(f_U \cdot)s_x = (f \circ \pi)x \cdot s_x$, $x \in \pi^{-1}(U)$, $s_x \in S_x$ and let $(f_U \cdot)_* : H^q(\pi^{-1}(U), S) \to H^q(\pi^{-1}(U), S)$ be the induced map on cohomology.

We can then define a map $O_X(U) \times H^q(\pi^{-1}(U), S) \to H^q(\pi^{-1}(U), S)$ that sends $(f, c) \in O_X(U) \times H^q(\pi^{-1}(U), S)$ to $(f_U \cdot)_*c$. It is easy to check that it is a morphism of presheaves $O_X(-) \times H^q(\pi^{-1}(-), S) \to H^q(\pi^{-1}(-), S)$ which extends naturally to a morphism on the associated sheaves $O_X \times R^q\pi_* S \to R^q\pi_* S$.

The main theorem in Grauert [6], says that the direct image sheaves $R^q\pi_* S$ are coherent O_X-modules, when S is a coherent O_X-module and $q \geq 0$. Since Ω is a Stein domain, Satz 5, Section 2 in [6], gives that the natural map $\pi_* : H^q(\overline{\Omega}, S_{\overline{\Omega}}) \to \Gamma(\overline{\Omega}, R^q\pi_* S_{\overline{\Omega}})$ is an isomorphism. This fact and the following lemma will enable us to finish the proof of Proposition 1.3.

Lemma 2.1. For each $q > 0$ and for each coherent, torsion-free O_X-module S there exists a $T \in \mathbb{N}$ such that $i_{\overline{\Omega},*} : H^q(\overline{\Omega}, J^T S) \to H^q(\overline{\Omega}, S)$ is the zero map, where $i : J^T S \hookleftarrow S$ is the inclusion map.

Proof. We shall prove the lemma using downward induction on $q > 0$. Observe that $\overline{\Omega}$ is an n-dimensional complex manifold with no compact n-dimensional connected components since it is obtained by blow-ups from a pure n-dimensional Stein space Ω. It follows from the Main Theorem in Siu [12] that $H^u(\overline{\Omega}, S) = 0$ for every coherent O_X-module S. Hence, the statement is true for $q = n$ and any $T \in \mathbb{N}$.

When $q > 0$, $\text{Supp}R^q\pi_* S$ is contained in A. The annihilator ideal A' of $R^q\pi_* S$ is coherent and by Cartan’s Theorem A there exist functions $f_1, \ldots, f_L \in A'(X)$ that generate each stalk A'_x in a neighborhood of $\overline{\Omega}$. Let A be the O_X-ideal generated by $\tilde{f}_j = f_j \circ \pi$, $1 \leq j \leq L$. A crucial observation, which will be useful later, is that $(f_j)_{\overline{\Omega},*} : H^q(\overline{\Omega}, S_{\overline{\Omega}}) \to H^q(\overline{\Omega}, S_{\overline{\Omega}})$ are zero for all j, $1 \leq j \leq L$, $q > 0$. To see this, consider the following commutative diagram:

$$
\begin{array}{ccc}
H^q(\overline{\Omega}, S_{\overline{\Omega}}) & \xrightarrow{(f_j)_{\overline{\Omega},*}} & H^q(\overline{\Omega}, S_{\overline{\Omega}}) \\
\cong & & \cong \\
R^q\pi_* S(\overline{\Omega}) & \xrightarrow{(f_j)_{\overline{\Omega},*}} & R^q\pi_* S(\overline{\Omega})
\end{array}
$$

The vertical maps are isomorphisms, due to Satz 5, Section 2, in [6]. Recalling the way O_X acts on $R^q\pi_* S$ and using the fact that the f_j’s are in the annihilator ideal of $R^q\pi_* S$, we conclude that $(f_j)_{\overline{\Omega},*} = 0$. Hence, due to the commutativity of the above diagram $(f_j)_{\overline{\Omega},*}$ is zero.

Let $Z(A)$ (resp. $Z(A')$) denote the zero variety of A (resp. A'). Since $Z(A') = \text{Supp}R^q\pi_* S$ is contained in A, we have that $Z(A)$ is contained in \overline{A} near $\overline{\Omega}$. Thus by Rückert’s Nullstellensatz for ideal sheaves (see Theorem, page 82 in [6]), we have $J^\mu \subset A$ on Ω for some $\mu \in \mathbb{N}$. Consider the surjection $\phi : S^{[L]} \to AS$ given by
Let σ be a real analytic metric on \tilde{X}, let $|\cdot|_{x,\sigma}$ denote the pointwise norm of an element of $\bigwedge^r T_x \tilde{X}$ or $\bigwedge^r T_x^* \tilde{X}$ for some $r > 0$ with respect to the metric σ and let $d_{\tilde{A}}$ be the distance to \tilde{A} in \tilde{X}. Let d_A denote the distance to A relative to an embedding of a neighborhood X_0 of $\overline{\Omega}$ in \mathbb{C}^s and let $|\cdot|_y$ denote the pointwise norm of an element in $\bigwedge^r T_y (X_0 \setminus X_{\text{sing}})$ for some $r > 0$, with respect to the restriction of the pull back of the euclidean metric in \mathbb{C}^s to $X_0 \setminus X_{\text{sing}}$. Let dV, dV_y denote the volume forms on $X_0 \setminus X_{\text{sing}}$ and \tilde{X}. The map $\pi : \tilde{X} \setminus \tilde{A} \rightarrow X \setminus A$ is a biholomorphism of complex manifolds. It induces a linear isomorphism $\pi_* : \bigwedge^r T_x (\tilde{X} \setminus \tilde{A}) \rightarrow \bigwedge^r T_{\pi(x)} (X \setminus A)$ for $x \notin \tilde{A}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 3.1. We have for \(x \in \tilde{\Omega} \setminus \tilde{A} \), \(v \in \bigwedge^r T_x(\Omega) \)

\[
6 \quad c' d^d_{A}(x) \leq d_A(\pi(x)) \leq C' d_{\tilde{A}}(x),
\]

\[
7 \quad c d^d_{\tilde{A}}(x) |v|_{x,\sigma} \leq |\pi_*(v)|_{\pi(x)} \leq C |v|_{x,\sigma}
\]

for some positive constants \(c', c, C', t, M \), where \(c, C, M \) may depend on \(r \).

For an \(r \)-form \(a \) in \(\Omega^* \) set \(|\pi^*a|_{x,\sigma} := \max\{|\langle a_{\pi(x)}, \pi_* v \rangle| : |v|_{x,\sigma} \leq 1, v \in \bigwedge^r T_x(\Omega \setminus \tilde{A})\} \), where by \(\langle \cdot, \cdot \rangle \) we denote the pairing of an \(r \)-form with a corresponding tangent vector. Using (7) we obtain

\[
8 \quad c d^d_{\tilde{A}}(x) |a|_{\pi(x)} \leq |\pi^*a|_{x,\sigma} \leq C |a|_{\pi(x)}
\]
on \(\tilde{\Omega} \), for some positive constant \(M \).

Proof. The right-hand side inequalities in the above estimates are obvious consequences of the differentiability of \(\pi \), while the left-hand side inequalities are consequences of the Lojasiewicz inequalities (see for example [10], or [11], Chapter 4, Theorem 4.1) in the following form:

Lemma 3.2. Let \(f \) be a real analytic, real-valued function defined in an open set \(V \) in \(\mathbb{R}^d \). Let \(Z_f = \{ x \in V : f(x) = 0 \} \). Then, for every compact \(K \subset V \), there exist positive constants \(c, m \) such that

\[
|f(x)| \geq c d(x, Z_f)^m
\]

when \(x \in K \).

Lemma 3.2 generalizes easily to the case when \(V \) is an open subset in a real analytic manifold and the distance is defined by a real analytic Riemannian metric.

To prove the left-hand side inequality in (6) let \(f : \tilde{X} \times A \to \mathbb{R} \) be given by

\[
f(x, z) = |\pi(x) - z|^2
\]

and \(K := \tilde{\Omega} \times \text{(compact neighborhood of } \Omega \cap A) \).

Clearly \(Z_f \subset \tilde{A} \times A \). When \(x \in \tilde{\Omega} \) and \(z \) is the nearest point to \(\pi(x) \) in \(A \), we have

\[
f(x, z) = |\pi(x) - z|^2 = d(\pi(x), A)^2 \geq c d((x, z), Z_f)^m \geq c d_{\tilde{A}}(x)^m.
\]

If we write \(m = 2t \) for some \(t > 0 \) constant, then we obtain from this last estimate the left-hand side inequality in (6).

To prove the left-hand side inequality in (7), we consider the unit sphere bundle \(S^r(\tilde{X}) \) in \(\bigwedge^r T\tilde{X} \). Recall \(\tilde{X} \) has a real analytic metric \(\sigma \) so \(S^r(\tilde{X}) \) becomes a real analytic manifold. We choose a metric on \(S^r(\tilde{X}) \) such that the projection \(p : S^r(\tilde{X}) \to \tilde{X} \) is distance decreasing. For \(\nu = (x, \xi_x) \) on the unit sphere bundle \(S^r(\tilde{X}) \), we set \(f(\nu) := |\pi_* \xi_x|^2_{\pi(p(\nu))} \) and let \(K := p^{-1}(\overline{\Omega}) \). Clearly, \(Z_f \subset p^{-1}(\tilde{A}) \).

It follows that \(|\pi_* \xi_x|^2_{\pi(p(\nu))} = f(\nu) \geq c d(\nu, Z_f)^R \geq c d(p(\nu), \tilde{A})^R \) when \(\nu \in K \). Write \(2M = R \) for some \(M > 0 \) constant. The general case follows by applying this last inequality to \(\frac{\nu}{|\nu|} \) for \(\nu \neq 0, v \in \bigwedge^r T_x(\Omega) \).

Estimate (8) will be derived from (7) and the following remark:

Remark. Let \(T : V \to W \) be a linear isomorphism of normed spaces such that \(\|Tv\| \geq c\|v\| \) for \(v \in V \) and \(c > 0 \) constant. Then \(B_W(0, c) \subset T(B_V(0, 1)) \), where by \(B_V(0, 1) \) we denote the unit ball in \(V \) and \(B_W(0, c) \) is the ball in \(W \), centered at 0 and having radius \(c \).
Using (7) and applying the above remark to \(\pi_\ast : \Lambda^r T_x(\tilde{\Omega} \setminus \tilde{A}) \to \Lambda^r T_{\pi(x)}(\Omega \setminus A) \)
we obtain for \(x \in \Omega \setminus A \), \(a_{\pi(x)} \in \Lambda^r T_{\pi(x)}(\Omega \setminus A) \):
\[
|\pi^* a|_{x, \sigma} = \max \{ |(a_{\pi(x)}, \pi_* v)| : |v|_{x, \sigma} \leq 1, v \in \Lambda^r T_x(\tilde{\Omega} \setminus \tilde{A}) \} \\
\geq \max \{ |(a_{\pi(x)}, w)| : |w|_{\pi(x)} \leq c d_{\tilde{A}}(x) \}, w \in \Lambda^r T_{\pi(x)}(\Omega \setminus A) \} \\
= c d_{\tilde{A}}(x) |a|_{\pi(x)}.
\]

This result applies in particular to the volume form in \(\Omega \setminus A \) and gives
\[
(9) \quad c_1 d_{\tilde{A}}(x)^M d\tilde{V}_{x, \sigma} \leq (\pi^* dV)_x \leq C_1 d\tilde{V}_{x, \sigma}.
\]

4. Proof of Theorem 1.1

Given \(N_0 \in \mathbb{N} \), choose \(k \geq M + t \frac{M}{N_0} \geq 0 \), with \(t, M \) as in Lemma 3.1. Then by Proposition 1.3, there exists \(\ell \geq k \) such that \(H^q(\tilde{\Omega}, J^k \Omega^p) \to H^q(\tilde{\Omega}, J^k \Omega^p) \) is the zero homomorphism. Choose \(N \in \mathbb{N} \) such that \(N \geq 2n\ell + M_1 \), where \(M_1 \) is as in (3).

The proof of Theorem 1.1 will be based on the following change of variables result:

Lemma 4.1. Let \(W, W' \) be orientable, Riemannian manifolds and let \(F : W \to W' \) be an orientation-preserving diffeomorphism. Let \(dV, dV' \) denote the corresponding volume elements of \(W, W' \), respectively. For \(f \in L^1(W', dV') \) we have
\[
(10) \quad \int_W f dV' = \int_W (f \circ F) F^*(dV').
\]

Since \(\pi : \tilde{\Omega} \setminus \tilde{A} \to \Omega \setminus A \) is a biholomorphism and orientation-preserving map—as long as we choose appropriate orientations on \(\Omega \setminus A \), \(\tilde{\Omega} \setminus \tilde{A} \)—for any \(f \) satisfying \(\|f\|_{N, \Omega^*} < \infty \) we have (by applying Lemma 4.1)
\[
\int_{\Omega \setminus A} |f|^2 d_{\tilde{A}}^N dV = \int_{\tilde{\Omega} \setminus \tilde{A}} |f|^2_{\pi(x)} d_{\tilde{A}}(\pi(x))^{-N} (\pi^* dV)_x.
\]

Using the fact that
\[
|f|_{\pi(x)} \geq C^{-1} |\pi^* f|_{x, \sigma} \quad \text{(right-hand side of (8))},
\]
\[
d_{\tilde{A}}(\pi(x))^{-1} \geq C'\ell^{-1} d_{\tilde{A}}(x) \quad \text{(right-hand side of (6))},
\]
\[
(\pi^* dV)_{x, \sigma} \geq c_1 d_{\tilde{A}}^{M_1}(x) d\tilde{V}_{x, \sigma} \quad \text{(left-hand side of (9))},
\]

we obtain
\[
\|f\|^2_{N, \Omega^*} \geq c'' \int_{\tilde{\Omega} \setminus \tilde{A}} |\pi^* f|^2_{\tilde{A}} d_{\tilde{A}}^{M_1-N} d\tilde{V}_{x, \sigma}
\]

for some \(c'' > 0 \) constant. Since \(N \) was chosen such that \(N \geq M_1 \), we see that \(\overline{\partial} \pi^* f = 0 \) on \(\tilde{\Omega} \). It is not hard to show that \(\pi^* f \in J^k \mathcal{L}_{p,q}(\tilde{\Omega}) \). By Proposition 1.3 we know that there exists \(v \in J^k \mathcal{L}_{p,q-1}(\tilde{\Omega}) \) such that \(\overline{\partial} v = \pi^* f \) in \(\tilde{\Omega} \). Set \(u := (\pi^{-1})^* v \).
Then \(\overline{\partial} u = f \) in \(\Omega^* \) and for any \(\Omega' \subset \subset \Omega \) we have
\[
\int_{\Omega'} |u|^2 d^{N_0}_A dV = \int_{\Omega' \setminus \overline{A}} |u|_{\pi(x)}^2 d^{N_0}_A (\pi(x)) \pi^* (dV) \leq \int_{\Omega' \setminus \overline{A}} d^{-tN_0-2M} |v|^2_{x,\sigma} d\tilde{V}_{x,\sigma} \leq \int_{\Omega' \setminus \overline{A}} d^{-2k} |v|^2_{x,\sigma} d\tilde{V}_{x,\sigma} < \infty.
\]

To pass from the 1st line to the 2nd one we use the fact that
\[
|u|_{\pi(x)} \leq c^{-1} d^{-M}_A (x) |v|_{x,\sigma}, \quad d^{N_0}_A (\pi(x)) \leq c' - N_0 d^{-tN_0}_A (x)
\]
and that \((\pi^* dV)_{x,\sigma} \leq C_1 d\tilde{V}_{x,\sigma} \).

To conclude the proof of Theorem 1.1 we shall need the following lemma:

Lemma 4.2. Let \(M \) be a complex manifold and let \(E \) and \(F \) be Frechet spaces of differential forms (or currents) of type \((p,q-1), (p,q) \), whose topologies are finer (possibly strictly finer) than the weak topology of currents. Assume that for every \(f \in F \), the equation \(\overline{\partial} u = f \) has a solution \(u \in E \). Then, for every continuous seminorm \(p \) on \(E \), there is a continuous seminorm \(q \) on \(F \) such that the equation \(\overline{\partial} u = f \) has a solution with \(p(u) \leq q(f) \) for every \(f \in F \), \(q(f) > 0 \).

Proof. Set \(G = \{ (u, f) \in E \times F : \overline{\partial} u = f \} \). Then \(G \) is closed in \(E \times F \). To see this, let \((u_\nu, f_\nu) \in G \) with \(u_\nu \to u \in E \), \(f_\nu \to f \) in \(F \). For test forms \(\phi \in C^0_0(n-p, n-q)(M) \) we get
\[
\int_M f \wedge \phi = \lim_{\nu \to \infty} \int_M f_\nu \wedge \phi = \lim_{\nu \to \infty} (-1)^{p+q} \int_M u_\nu \wedge \overline{\partial} \phi = (-1)^{p+q} \int_M u \wedge \overline{\partial} \phi,
\]
so \(\overline{\partial} u = f \) weakly.

Thus, \(G \) is a Frechet space and the bounded surjection \(\pi_2 : G \to F \) is open must be open. The set \(\pi_2(\{(u, v) \in G : p(u) < 1\}) \) is an open neighborhood of \(0 \) in \(F \), and contains \(\{ f : q(f) \leq 1 \} \) for some continuous seminorm \(q \). Let \(f \in F \), \(0 < q(f) = c \). Then \(q(c^{-1} f) = 1 \), so by the previous argument there exists a solution \(c^{-1} u \) satisfying \(\overline{\partial} (c^{-1} u) = c^{-1} f \) with \(p(c^{-1} u) < 1 \), i.e. \(p(u) < c = q(f) \). \(\square \)

When \(F \) is a Banach space with norm \(\| \cdot \| \), we conclude that, given a seminorm \(p \), there is a constant \(C > 0 \) such that \(\{ f : \| f \| \leq C^{-1} \} \subset \overline{G}(\{ u : p(u) \leq 1 \}) \), so \(\overline{\partial} u = f \) has a solution \(u \) with \(p(u) \leq C \| f \| \). Applying this result to our situation, we see that if \(\overline{\partial} f = 0 \), \(\| f \|_{\Omega, N} < \infty \) and \(\Omega_0 \subset \subset \Omega \), we obtain a solution \(u \) to \(\overline{\partial} u = f \) in \(L^2_{p,q-1}(\Omega^*) \) with \(\| u \|_{\Omega_0, N_0} \leq c \| f \|_{\Omega, N} \).

5. Applications of Theorem 1.1

We apply Theorem 1.1 to the case where \(A \cap \overline{\Omega} \) is a finite subset of \(\overline{\Omega} \) with \(\partial \Omega \cap \partial A = \emptyset \), \(\Omega \subset \subset X \) is Stein and \(\overline{\Omega} \) has a Stein neighborhood \(\Omega^* \).

Proposition 5.1. With \(N_0, N \) as in Theorem 1.1 and \(\overline{\partial} f = 0 \) on \(\Omega^* \) and \(\| f \|_{\Omega, N} < \infty \), there is a solution \(u \) of \(\overline{\partial} u = f \) on \(\Omega^* \) with \(\| u \|_{\Omega, N_0} \leq c \| f \|_{\Omega, N} \), \(c \) independent of \(f \). In other words, we obtain a weighted \(L^2 \) estimate for \(u \) on all of \(\Omega \).
PROOF. Choosing $\Omega_0 \subset \subset \Omega$ containing $A \cap \Omega$, we have a solution u_0 in $L^2_{\text{loc}}(\Omega^*)$ with $\|u_0\|_{\Omega_0,N_0} \leq c\|f\|_{\Omega,N}$. We introduce a cut-off function $\chi \in C^\infty(X)$ such that $\chi = 1$ on $X \setminus \Omega_0$ but $\chi = 0$ near $A \cap \Omega$. Set $f_1 = \overline{\partial}(\chi u_0)$. Clearly, $\|f_1\|_{L^2(\Omega)} \leq c\|f\|_{\Omega,N}$ and $f_1 = 0$ near $\Omega_0 \cap A$.

Let $\pi: \tilde{X} \to X$ be a desingularization of X and consider the equation $\overline{\partial}v = \pi^* f_1$ on $\tilde{\Omega}$. Let $\tilde{\Omega}_0 := \pi^{-1}(\Omega_0)$. The equation $\overline{\partial}v = \pi^* f_1$ is solvable in $L^2_{p,q-1}(\tilde{\Omega}_0)$. We can assume that $\tilde{\Omega}$ can be exhausted by smoothly bounded strongly pseudoconvex domains $\tilde{\Omega}_j := \{z \in \tilde{\Omega}; \phi < c_j\}$, where c_j are real numbers, ϕ is an exhaustion function for $\tilde{\Omega}$, of class $C^3(\tilde{\Omega})$, strictly plurisubharmonic outside a compact subset, and also that $b\tilde{\Omega}_0$ is smooth and strongly pseudoconvex and contained in each $\tilde{\Omega}_j$. To each $\tilde{\Omega}_j$ we apply Theorem 3.4.6 in \cite{9} and we obtain a solution \tilde{v}_j to the equation $\overline{\partial}\tilde{v}_j = \pi^* f_1$ in $\tilde{\Omega}_j$ with

$$\int_{\tilde{\Omega}_j} |v_j|^2 e^{-\phi} d\tilde{V}_\sigma \leq C \int_{\tilde{\Omega}} |\pi^* f_1|^2 d\tilde{V}_\sigma,$$

where C is a positive constant independent of j, f (this follows from a careful inspection of the proof of Theorem 3.4.6 in \cite{9}).

Consider the trivial extensions v_j^* of v_j outside $\tilde{\Omega}_j$. Let v be a weak limit of v_j^*. Then

$$\int_{\tilde{\Omega}} |v|^2 e^{-\phi} d\tilde{V}_\sigma \leq C \int_{\tilde{\Omega}} |\pi^* f_1|^2 d\tilde{V}_\sigma$$

and $\overline{\partial}v = \pi^* f_1$ in $\tilde{\Omega}$. So there is a solution v satisfying $\|v\|_{L^2(\tilde{\Omega})} \leq c\|f_1\|$. Then $w := (\pi^{-1})^* v$ satisfies $\overline{\partial}w = f_1$ in Ω^* but we no longer have control of its L^2-norm near $A \cap \Omega$. Choose another cut-off function χ_0 such that $\chi_0 = 1$ on $\text{supp} \chi$ but $\chi_0 = 0$ near $\Omega_0 \cap A$. Then

$$\overline{\partial}((1 - \chi)u_0) + \chi_0 (\pi^{-1})^* v = (1 - \chi) f - \overline{\partial} \chi \wedge u_0 + \overline{\partial} \chi_0 \wedge (\pi^{-1})^* v + \chi f + \overline{\partial} \chi \wedge u_0 = f + \overline{\partial} \chi_0 \wedge (\pi^{-1})^* v.$$

Finally we may solve $\overline{\partial}v_1 = \overline{\partial} \chi_0 \wedge (\pi^{-1})^* v$ in Ω^* (apply Theorem 1.1 to the trivial extension of $\overline{\partial} \chi_0 \wedge (\pi^{-1})^* v$ in Ω^*):

$$\|v_1\|_{\Omega,N_0} \leq C \|\overline{\partial} \chi_0 \wedge (\pi^{-1})^* v\|_{\Omega,N} \leq c' \|\overline{\partial} \chi_0 \wedge (\pi^{-1})^* v\|_{L^2(\Omega)} \leq C\|f\|_{\Omega,N}$$

since $\overline{\partial} \chi = 0$ near A. Thus, $u := (1 - \chi)u_0 + \chi_0 (\pi^{-1})^* v - v_1$ is a solution with the required estimate.

6. GENERALIZATIONS

Theorem 1.1 and Corollary 1.2 also extend to the case when Ω is a relatively compact domain in a complex space X of pure dimension n with strictly pseudoconvex boundary. We know that Ω contains a maximal positive-dimensional compact variety B and let A be a nowhere open analytic subvariety of X containing X_{sing} and B. Then Theorem 1.1 carries over verbatim to the case described above. The proof needs the following modifications: Let $\Omega

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
desingularization of X_0 such that $\pi^{-1}(A)$ is a hypersurface with normal crossings. To obtain a proof of Proposition 1.3 (vanishing cohomology), we need to consider direct images $R^q(\phi \circ \pi)_* S$ on the Stein space X_1 and their annihilator ideal A for S coherent on \tilde{X}. Then, the proof carries over.

Corollary 1.2, for the case when $X_{\text{sing}} \cap b\Omega$ is empty and with $A = B \cup (X_{\text{sing}} \cap \Omega)$, follows exactly as above.

Acknowledgements

J. E. Fornæss was supported in part by an NSF grant. Part of this work was done while the second author was visiting the University of Michigan at Ann Arbor, while on sabbatical leave from Oslo University. His work was supported by the Norwegian Research Council, NFR, and the University of Michigan. The third author thanks Tom Haines for helpful discussions and the Department of Mathematics at the University of Oslo for its hospitality and support during her visit in May of 2003.

References

[9] L. Hörmander, L^2 estimates and existence theorems for the $\overline{\partial}$ operator, Acta Mathematica, 113 (1965), 89-152. MR0179443 (31:691)

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
E-mail address: fornaess@umich.edu

Department of Mathematics, University of Oslo, P.B 1053 Blindern, Oslo, N-0316 Norway
E-mail address: nilsov@math.uio.no

Department of Mathematics, Georgetown University, Washington, DC 20057
E-mail address: sv46@georgetown.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use