Pointwise uniformly rotund norms
HTML articles powered by AMS MathViewer
- by Jan Rychtář
- Proc. Amer. Math. Soc. 133 (2005), 2259-2266
- DOI: https://doi.org/10.1090/S0002-9939-05-07984-0
- Published electronically: March 4, 2005
- PDF | Request permission
Abstract:
It is shown that some properties of compact spaces $K$, such as carrying a strictly positive measure or being descriptive, are closely related to renormings of $C(K)$ or $C(K)^*$, respectively, by pointwise uniformly rotund norms.References
- S. Argyros and V. Farmaki, On the structure of weakly compact subsets of Hilbert spaces and applications to the geometry of Banach spaces, Trans. Amer. Math. Soc. 289 (1985), no. 1, 409–427. MR 779073, DOI 10.1090/S0002-9947-1985-0779073-9
- D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35–46. MR 228983, DOI 10.2307/1970554
- Y. Benyamini and T. Starbird, Embedding weakly compact sets into Hilbert space, Israel J. Math. 23 (1976), no. 2, 137–141. MR 397372, DOI 10.1007/BF02756793
- W. Wistar Comfort and Stylianos A. Negrepontis, Chain conditions in topology, Cambridge Tracts in Mathematics, vol. 79, Cambridge University Press, Cambridge-New York, 1982. MR 665100
- Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634
- S. J. Dilworth, Denka Kutzarova, and S. L. Troyanski, On some uniform geometric properties in function spaces, General topology in Banach spaces, Nova Sci. Publ., Huntington, NY, 2001, pp. 127–135. MR 1901540
- Marián J. Fabian, Gâteaux differentiability of convex functions and topology, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997. Weak Asplund spaces; A Wiley-Interscience Publication. MR 1461271
- Marián Fabian, Gilles Godefroy, and Václav Zizler, The structure of uniformly Gateaux smooth Banach spaces, Israel J. Math. 124 (2001), 243–252. MR 1856517, DOI 10.1007/BF02772620
- Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, and Václav Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 8, Springer-Verlag, New York, 2001. MR 1831176, DOI 10.1007/978-1-4757-3480-5
- M. Fabian, V. Montesinos and V. Zizler: Biorthogonal systems in weakly Lindelöf spaces, submitted.
- Richard Haydon, Trees in renorming theory, Proc. London Math. Soc. (3) 78 (1999), no. 3, 541–584. MR 1674838, DOI 10.1112/S0024611599001768
- K. John and V. Zizler, Smoothness and its equivalents in weakly compactly generated Banach spaces, J. Functional Analysis 15 (1974), 1–11. MR 0417759, DOI 10.1016/0022-1236(74)90021-4
- D. N. Kutzarova: On an equivalent norm in $L_1$ which is uniformly convex in every direction, Constructive Theory of Functions, Sofia 84 (1984), 507-512.
- D. N. Kutzarova and S. L. Troyanski, Reflexive Banach spaces without equivalent norms which are uniformly convex or uniformly differentiable in every direction, Studia Math. 72 (1982), no. 1, 91–95. MR 665893, DOI 10.4064/sm-72-1-91-95
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279
- I. Namioka: Fragmentability in Banach spaces. Interaction of topologies, Lecture Notes, Paseky School, Czech Republic (1999).
- Haskell P. Rosenthal, On injective Banach spaces and the spaces $L^{\infty }(\mu )$ for finite measure $\mu$, Acta Math. 124 (1970), 205–248. MR 257721, DOI 10.1007/BF02394572
- M. Raja, Weak${}^*$ locally uniformly rotund norms and descriptive compact spaces, J. Funct. Anal. 197 (2003), no. 1, 1–13. MR 1957673, DOI 10.1016/S0022-1236(02)00037-X
- Jan Rychtář, Renorming of $C(K)$ spaces, Proc. Amer. Math. Soc. 131 (2003), no. 7, 2063–2070. MR 1963751, DOI 10.1090/S0002-9939-03-07001-1
- Mark A. Smith, Banach spaces that are uniformly rotund in weakly compact sets of directions, Canadian J. Math. 29 (1977), no. 5, 963–970. MR 450942, DOI 10.4153/CJM-1977-097-6
- Stevo Todorčević, Compact subsets of the first Baire class, J. Amer. Math. Soc. 12 (1999), no. 4, 1179–1212. MR 1685782, DOI 10.1090/S0894-0347-99-00312-4
Bibliographic Information
- Jan Rychtář
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- Address at time of publication: Department of Mathematical Sciences, University of North Carolina at Greensboro, Greensboro, North Carolina 27402
- Email: jrychtar@math.ualberta.ca, rychtar@uncg.edu
- Received by editor(s): March 25, 2003
- Published electronically: March 4, 2005
- Additional Notes: This research was supported by NSERC 7926, FS Chia Ph.D. Scholarship for 2002/2003 and GAUK 277/2001, written as part of the author’s Ph.D. thesis under the supervision of Professor N. Tomczak-Jaegermann and Professor V. Zizler
- Communicated by: Jonathan M. Borwein
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 2259-2266
- MSC (2000): Primary 46B03, 46B26, 46E05
- DOI: https://doi.org/10.1090/S0002-9939-05-07984-0
- MathSciNet review: 2138868