## A purely algebraic characterization of the hyperreal numbers

HTML articles powered by AMS MathViewer

- by Vieri Benci and Mauro Di Nasso PDF
- Proc. Amer. Math. Soc.
**133**(2005), 2501-2505 Request permission

## Abstract:

The hyperreal numbers of nonstandard analysis are characterized in purely algebraic terms as homomorphic images of a suitable class of rings of functions.## References

- Mikhail Y. Antonovskij, David V. Chudnovsky, Gregory V. Chudnovsky, and Edwin Hewitt,
*Rings of real-valued continuous functions. II*, Math. Z.**176**(1981), no. 2, 151–186. MR**607959**, DOI 10.1007/BF01261866 - Vieri Benci and Mauro Di Nasso,
*A ring homomorphism is enough to get nonstandard analysis*, Bull. Belg. Math. Soc. Simon Stevin**10**(2003), no. 4, 481–490. MR**2040525** - C. C. Chang and H. J. Keisler,
*Model theory*, 3rd ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam, 1990. MR**1059055** - G.L. Cherlin and M.A. Dickmann,
*Real closed rings I. Residue rings of rings of continuous functions*, Fund. Math.**126**(1986), 147–183. - H. Garth Dales and W. Hugh Woodin,
*Super-real fields*, London Mathematical Society Monographs. New Series, vol. 14, The Clarendon Press, Oxford University Press, New York, 1996. Totally ordered fields with additional structure; Oxford Science Publications. MR**1420859** - Leonard Gillman and Meyer Jerison,
*Rings of continuous functions*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0116199** - Edwin Hewitt,
*Rings of real-valued continuous functions. I*, Trans. Amer. Math. Soc.**64**(1948), 45–99. MR**26239**, DOI 10.1090/S0002-9947-1948-0026239-9 - H.J. Keisler,
*Foundations of Infinitesimal Calculus*, Prindle, Weber & Schmidt, 1976. - James J. Moloney,
*Residue class domains of the ring of convergent sequences and of $C^\infty ([0,1],\textbf {R})$*, Pacific J. Math.**143**(1990), no. 1, 79–153. MR**1047403** - Judy Roitman,
*Nonisomorphic hyper-real fields from nonisomorphic ultrapowers*, Math. Z.**181**(1982), no. 1, 93–96. MR**671717**, DOI 10.1007/BF01214984

## Additional Information

**Vieri Benci**- Affiliation: Dipartimento di Matematica Applicata “Ulisse Dini”, Università di Pisa, Pisa, Italy
- Email: benci@dma.unipi.it
**Mauro Di Nasso**- Affiliation: Dipartimento di Matematica “Leonida Tonelli”, Università di Pisa, Pisa, Italy
- MR Author ID: 610241
- Email: dinasso@dm.unipi.it
- Received by editor(s): November 13, 2002
- Received by editor(s) in revised form: July 11, 2003
- Published electronically: April 19, 2005
- Communicated by: Carl G. Jockusch, Jr.
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**133**(2005), 2501-2505 - MSC (2000): Primary 16S60, 54C40, 26E35
- DOI: https://doi.org/10.1090/S0002-9939-05-07429-0
- MathSciNet review: 2146232