CALDERÓN-ZYGMUND OPERATORS ON HARDY SPACES
WITHOUT THE DOUBLING CONDITION

WENGU CHEN, YAN MENG, AND DACHUN YANG

Abstract. Let \(\mu \) be a non-negative Radon measure on \(\mathbb{R}^d \) which only satisfies some growth condition. In this paper, the authors obtain the boundedness of Calderón-Zygmund operators in the Hardy space \(H^1(\mu) \).

1. Introduction

In recent years, many papers focus on the analysis on \(\mathbb{R}^d \) with non-doubling measure; see [2, 5, 6, 8, 3, 4, 1] and their references. Moreover, the analysis on such \(\mathbb{R}^d \) was proved to play a striking role in solving the long open Painlevé’s problem by Tolsa in [9]; see also [10] for more background of this. Throughout this paper, the Euclidean space \(\mathbb{R}^d \) is endowed with a non-negative Radon measure \(\mu \) which only satisfies the following growth condition that there exists \(C_0 > 0 \) such that

\[
|B(x, r)| \leq C_0 r^n
\]

for all \(x \in \mathbb{R}^d \) and \(r > 0 \), where \(B(x, r) = \{ y \in \mathbb{R}^d : |y - x| < r \} \), \(n \) is a fixed number and \(0 < n \leq d \). Such a measure \(\mu \) is not necessary to be doubling. We recall that \(\mu \) is said to satisfy the doubling condition if there exists \(C > 0 \) such that \(\mu(B(x, 2r)) \leq C \mu(B(x, r)) \) for all \(x \in \text{supp}(\mu) \) and \(r > 0 \). It is well known that the doubling condition in the analysis on spaces of homogeneous type is a key assumption. However, some research has now indicated that the doubling condition is superfluous for most of the classical Calderón-Zygmund theory.

Let \(K \) be a function on \(\mathbb{R}^d \times \mathbb{R}^d \setminus \{(x, y) : x = y\} \) satisfying that for \(x \neq y \),

\[
|K(x, y)| \leq C|x - y|^{-n},
\]

and for \(|x - y| \geq 2|x - x'| \),

\[
|K(x, y) - K(x', y)| + |K(y, x) - K(y, x')| \leq C \frac{|x - x'|^\delta}{|x - y|^{n+\delta}},
\]

where \(\delta \in (0, 1] \) and \(C > 0 \) is a constant. The Calderón-Zygmund operator associated to the above kernel \(K \) and the measure \(\mu \) is formally defined by

\[
Tf(x) = \int_{\mathbb{R}^d} K(x, y)f(y)d\mu(y).
\]

Received by the editors March 8, 2004 and, in revised form, April 22, 2004.

2000 Mathematics Subject Classification. Primary 42B20; Secondary 42B30, 42B25, 43A99.

This project was supported by NNSF (No. 10271015 & No. 10371080) of China and the third (corresponding) author was also supported by RFDP (No. 20020027004) of China.

©2005 American Mathematical Society

Reverts to public domain 28 years from publication.

2671
This integral may not be convergent for many functions. Thus we consider the truncated operators T_ε for $\varepsilon > 0$ defined by

$$T_\varepsilon f(x) = \int_{|x-y| > \varepsilon} K(x, y) f(y) \, d\mu(y).$$

We say that T is bounded on $L^2(\mu)$ if the operators $\{T_\varepsilon\}_{\varepsilon > 0}$ are bounded on $L^2(\mu)$ uniformly on $\varepsilon > 0$. In this case, there is an operator \tilde{T} which is the weak limit as $\varepsilon \to 0$ of some subsequence of operators $\{T_\varepsilon\}_{\varepsilon > 0}$; see \cite{5}. It is easy to see that \tilde{T} is still bounded on $L^2(\mu)$; moreover, for $f \in L^2(\mu)$ with compact support and a. e. $x \in \mathbb{R}^d \setminus \text{supp} (f)$,

$$\tilde{T} f(x) = \int_{\mathbb{R}^d} K(x, y) f(y) \, d\mu(y)$$

with the same K as in (1.2) and (1.3). By the same argument of Tolsa as in \cite{5,7}, we see that \tilde{T} is also bounded from $L^1(\mu)$ into weak-$L^1(\mu)$ and from $H^1(\mu)$ into $L^1(\mu)$.

In this paper, we will prove that \tilde{T} is bounded on the Hardy space $H^1(\mu)$ if $\tilde{T}^* 1 = 0$. Here, by $\tilde{T}^* 1 = 0$, we mean that for any bounded function b with compact support and $\int_{\mathbb{R}^d} b \, d\mu = 0$,

$$\int_{\mathbb{R}^d} \tilde{T} b(x) \, d\mu(x) = 0.$$

We remark that for such a function $b, b \in H^1(\mu)$ and therefore, $\tilde{T} b \in L^1(\mu)$. Also, if $\tilde{T} b \in H^1(\mu)$, then $\tilde{T} b$ should satisfy (1.5) by the definition of the Hardy space $H^1(\mu)$; see \cite{5,8} or Definition 2 below. Thus, in some sense, the condition (1.5) is also necessary.

If μ is the d-dimensional Lebesgue measure on \mathbb{R}^d, this result is well known and it was proved by verifying that \tilde{T} maps any atom of the Hardy space $H^1(\mathbb{R}^d)$ into some molecule. However, if μ only satisfies (1.1), it is still unknown if there is a molecular characterization for the Hardy space $H^1(\mu)$. We will prove that \tilde{T} is bounded on the Hardy space $H^1(\mu)$ via its “grand” maximal function characterization of Tolsa in \cite{8} and its new atomic characterization of the authors in \cite{1}.

Definition 1. Given $f \in L^1_{\text{loc}}(\mu)$, we set

$$M_{\Phi} f(x) = \sup_{\varphi \sim x} \left| \int_{\mathbb{R}^d} f \varphi \, d\mu \right|,$$

where the notation $\varphi \sim x$ means that $\varphi \in L^1(\mu) \cap C^1(\mathbb{R}^d)$ and satisfies

(i) $\|\varphi\|_{L^1(\mu)} \leq 1$,

(ii) $0 \leq \varphi(y) \leq \frac{1}{|y-x|^n}$ for all $y \in \mathbb{R}^d$, and

(iii) $|\nabla \varphi(y)| \leq \frac{1}{|y-x|^{n+1}}$ for all $y \in \mathbb{R}^d$, where $\nabla = (\partial/\partial x_1, \cdots, \partial/\partial x_d)$.

Based on Theorem 1.2 of Tolsa in \cite{8}, we define the Hardy space $H^1(\mu)$ as follows.

Definition 2. The Hardy space $H^1(\mu)$ is the set of all functions $f \in L^1(\mu)$ satisfying that $\int_{\mathbb{R}^d} f \, d\mu = 0$ and $M_{\Phi} f \in L^1(\mu)$. Moreover, we define the norm of $f \in H^1(\mu)$ by

$$\|f\|_{H^1(\mu)} = \|f\|_{L^1(\mu)} + \|M_{\Phi} f\|_{L^1(\mu)}.$$
Theorem 1. Let K be the function on $\mathbb{R}^d \times \mathbb{R}^d \setminus \{(x, y) : x = y\}$ satisfying (1.2) and (1.3). Suppose that the operator \widetilde{T} in (1.4) is bounded on $L^2(\mu)$ and $\widetilde{T}^* 1 = 0$ as in (1.5). Then \widetilde{T} is bounded on $H^1(\mu)$.

It is known that the dual space of $H^1(\mu)$ is the space $RBMO(\mu)$, which was introduced by Tolsa in [5]. From Theorem 1, the fact that $RBMO(\mu) = (H^1(\mu))^*$ (see [5]) and a standard dual argument, it is easy to deduce the boundedness of the transpose operator of \widetilde{T} in $RBMO(\mu)$ as below.

Corollary 1. Let \widetilde{T} be the same as in Theorem 1. Then \widetilde{T}^*, the transpose operator of \widetilde{T}, is bounded on $RBMO(\mu)$.

Remark 1. Obviously, from different subsequences of operators $\{T_\varepsilon\}_{\varepsilon > 0}$ which are bounded on $L^2(\mu)$ uniformly on $\varepsilon > 0$, one may deduce different \tilde{T}'s. However, they are all bounded on $L^2(\mu)$ and satisfy (1.4). But, the relation between these different \tilde{T}'s is still open.

In what follows, C denotes a positive constant that is independent of the main parameters involved but whose value may differ from line to line.

2. Proof of Theorem 1

We begin with some necessary notation and definitions. Throughout this paper, we only consider the closed cubes with sides parallel to the coordinate axes. For any cube Q and any $\alpha > 0$, αQ denotes the cube with the same center as Q and $l(\alpha Q) = \alpha l(Q)$, where $l(Q)$ denotes the side length of the cube Q.

Given two cubes $Q \subset R$ in \mathbb{R}^d, set

$$K_{Q, R} = 1 + \sum_{k=1}^{N_{Q, R}} \frac{\mu(2^k Q)}{l(2^k Q)^n},$$

where $N_{Q, R}$ is the smallest positive integer k such that $l(2^k Q) \geq l(R)$; see [5] for some properties of $K_{Q, R}$.

To prove Theorem 1, we need to recall the atomic characterization of the Hardy space $H^1(\mu)$ as follows.

Definition 3. Let $\rho > 1$, $1 < p \leq \infty$ and $\gamma \in \mathbb{N}$. A function $b \in L^1_{\text{loc}}(\mu)$ is called a (p, γ)-atomic block if

1. there exists some cube R such that $\text{supp}(b) \subset R$,
2. $\int_{\mathbb{R}^d} b d\mu = 0$,
3. for $j = 1, 2$, there are functions a_j supported on cube $Q_j \subset R$ and numbers $\lambda_j \in \mathbb{R}$ such that $b = \lambda_1 a_1 + \lambda_2 a_2$, and

$$\|a_j\|_{L^p(\mu)} \leq [\mu(\rho Q_j)]^{1/p-1} \left[K_{Q_j, R} \right]^{-\gamma}.$$

Then we define

$$|b|_{H^{1, p}_{\text{at}}, \gamma}(\mu) = |\lambda_1| + |\lambda_2|.$$
We say that $f \in H^{1, p}_{\text{atb}, \gamma}(\mu)$ if there are (p, γ)-atomic blocks $\{b_i\}_{i \in \mathbb{N}}$ such that

$$f = \sum_{i=1}^{\infty} b_i$$

with $\sum_{i=1}^{\infty} |b_i|_{H^{1, p}_{\text{atb}, \gamma}(\mu)} < \infty$. The $H^{1, p}_{\text{atb}, \gamma}(\mu)$ norm of f is defined by

$$\|f\|_{H^{1, p}_{\text{atb}, \gamma}(\mu)} = \inf \left\{ \sum_{i} |b_i|_{H^{1, p}_{\text{atb}, \gamma}(\mu)} \right\},$$

where the infimum is taken over all the possible decompositions of f into (p, γ)-atomic blocks.

The above definition when $\gamma = 1$ was introduced by Tolsa in [5] and when $\gamma > 1$ by the authors in [11]. It was proved in [5, 11] that the definition of $H^{1, p}_{\text{atb}, \gamma}(\mu)$ is independent of the chosen constant $\rho > 1$, and for any integer $\gamma \geq 1$ and $1 < p \leq \infty$, all the atomic Hardy spaces $H^{1, p}_{\text{atb}, \gamma}(\mu)$ are just the Hardy space $H^1(\mu)$ with equivalent norms. We remark that in the proof of Theorem 1 below, we need to choose $\gamma > 1$, especially, $\gamma = 2$.

The following lemma will be used in the proof of Theorem 1.

Lemma 1. Let M_Φ be as in Definition 1 and $1 < p < \infty$. Then M_Φ is bounded on $L^p(\mu)$.

In fact, Tolsa proved that M_Φ is bounded from $H^1(\mu)$ into $L^1(\mu)$; see Lemma 3.1 in [8]. On the other hand, it is obvious that M_Φ is bounded on $L^\infty(\mu)$. By Theorem 7.2 in [5], we obtain that M_Φ is bounded on $L^p(\mu)$ for $1 < p < \infty$.

Now we turn to the proof of Theorem 1.

Proof of Theorem 1. By a standard argument, it suffices to verify that for any atomic block b as in Definition 3 with $\rho = 4$, $p = \infty$ and $\gamma = 2$, $\tilde{T}b$ is in $H^1(\mu)$ with norm $C|b|_{H^{1, \infty}_{\text{atb}}(\mu)}$, where C is independent of b. Let all the notation be the same as in Definition 3. By our choices, a_j now satisfies the following size condition that

$$\|a_j\|_{L^\infty(\mu)} \leq \left[\mu(4Q_j)K_{Q_j}^2, R \right]^{-1},$$

where $j = 1, 2$.

The assumption that $\tilde{T^*}1 = 0$ tells us that $\int_{\mathbb{R}^d} \tilde{T}b d\mu = 0$. Recalling that \tilde{T} is bounded from $H^1(\mu)$ into $L^1(\mu)$ (see [5]), we obtain

$$\|\tilde{T}b\|_{L^1(\mu)} \leq C|b|_{H^{1, \infty}_{\text{atb}}(\mu)}.$$

By this and Definition 2, we deduce that the proof of Theorem 1 can be reduced to proving that

$$\|M_\Phi(\tilde{T}b)\|_{L^1(\mu)} \leq C|b|_{H^{1, \infty}_{\text{atb}}(\mu)}.$$

Write

$$
\|M_\Phi(\tilde{T}b)\|_{L^1(\mu)} = \int_{\mathbb{R}} M_\Phi(\tilde{T}b)(x) d\mu(x) + \int_{\mathbb{R}^d \setminus \mathbb{R}} M_\Phi(\tilde{T}b)(x) d\mu(x) = I + II.
$$
Noting that M_{Φ} is sublinear, we can control I by

$$I \leq \int_{4R} M_{\Phi} \left[(\widetilde{T}b)\chi_{8R} \right] (x) \, d\mu(x) + \int_{4R} M_{\Phi} \left[(\widetilde{T}b)\chi_{R^{k+1}8R} \right] (x) \, d\mu(x) = I_1 + I_2.$$

From the fact that for $j = 1, 2$, $Q_j \subset R$, it follows that for any $z \in Q_j$ and any $y \in 2^{k+1}R \setminus 2^k R$, $k \geq 3$, $|y - z| \geq l(2^{k-2}R)$. By this fact, (ii) of Definition 1, (1.2) and (2.1), we obtain

$$I_2 \leq \sum_{j=1}^{2} |\lambda_j| \int_{4R} \sup_{\varphi \sim 2} \left[\int_{\mathbb{R}^n \setminus 8R} |\tilde{T}b(y)| \varphi(y) \, d\mu(y) \right] \, d\mu(x)
\leq \sum_{j=1}^{2} |\lambda_j| \int_{4R} \sum_{k=1}^{\infty} \left[\int_{2^{k+1}R \setminus 2^k R} K(y, z) a_j(z) \, d\mu(z) \right] \frac{1}{|x - y|} \, d\mu(y) \, d\mu(x)
\leq C \sum_{j=1}^{2} |\lambda_j| \sum_{k=3}^{\infty} \|a_j\|_{L^\infty(\mu)} \mu(Q_j) \frac{(2^{k+1}R)}{l(2^{k-2}R)^n} \frac{\mu(4R)}{l(2^{k-2}R)^n}
\leq C \sum_{j=1}^{2} |\lambda_j|.$$

To estimate I_1, we write

$$I_1 \leq \sum_{j=1}^{2} |\lambda_j| \int_{4Q_j} M_{\Phi} \left[(\widetilde{T}a_j)\chi_{8R} \right] (x) \, d\mu(x)
+ \sum_{j=1}^{2} |\lambda_j| \int_{4R \setminus 4Q_j} M_{\Phi} \left[(\widetilde{T}a_j)\chi_{2Q_j} \right] (x) \, d\mu(x)
+ \sum_{j=1}^{2} |\lambda_j| \int_{4R \setminus 4Q_j} M_{\Phi} \left[(\widetilde{T}a_j)\chi_{R^{k+1}2Q_j} \right] (x) \, d\mu(x)
= I_{11} + I_{12} + I_{13}.$$

The Hölder inequality, Lemma 1, the boundedness of \widetilde{T} in $L^2(\mu)$ and (2.1) lead to

$$I_{11} \leq \sum_{j=1}^{2} |\lambda_j| \mu(4Q_j)^{1/2} \left\| M_{\Phi}[(\widetilde{T}a_j)\chi_{8R}] \right\|_{L^2(\mu)}
\leq C \sum_{j=1}^{2} |\lambda_j| \mu(4Q_j)^{1/2} \|\widetilde{T}a_j\|_{L^2(\mu)}
\leq C \sum_{j=1}^{2} |\lambda_j| \mu(4Q_j)^{1/2} \|a_j\|_{L^2(\mu)}
\leq C \sum_{j=1}^{2} |\lambda_j| \mu(4Q_j) \|a_j\|_{L^\infty(\mu)}
\leq C \sum_{j=1}^{2} |\lambda_j|.$$
For $j = 1, 2$, denote $N_{Q_j, 4R}$ simply by N_j. By (ii) of Definition 1, the Hölder inequality, the boundedness of \widetilde{T} in $L^2(\mu)$ and (2.1), we have

\[
I_{12} \leq \sum_{j=1}^{2} |\lambda_j| \sum_{k=2}^{N_j} \int_{2^{k+1}Q_j \setminus 2^kQ_j} \sup_{\varphi \sim x} \int_{2Q_j} |\widetilde{T}a_j(y)\varphi(y)| \, d\mu(y) \, d\mu(x)
\leq \sum_{j=1}^{2} |\lambda_j| \sum_{k=2}^{N_j} \int_{2^{k+1}Q_j \setminus 2^kQ_j} \frac{1}{l(2^{k-2}Q_j)^n} \, d\mu(x) \int_{2Q_j} |\widetilde{T}a_j(y)| \, d\mu(y)
\leq \sum_{j=1}^{2} |\lambda_j| \sum_{k=2}^{N_j} \frac{\mu(2^{k+1}Q_j)}{l(2^{k-2}Q_j)^n} \|T a_j\|_{L^2(\mu)} \mu(2Q_j)^{1/2}
\leq C \sum_{j=1}^{2} |\lambda_j| |K_{Q_j, R}| \mu(2Q_j)^{1/2} \|a_j\|_{L^2(\mu)}
\leq C \sum_{j=1}^{2} |\lambda_j|,
\]

where we have used the fact that

\[
(2.3) \quad K_{Q_j, 4R} \leq C K_{Q_j, R}.
\]

For I_{13}, we further decompose it into

\[
I_{13} = \sum_{j=1}^{2} |\lambda_j| \sum_{k=2}^{N_j} \int_{2^{k+1}Q_j \setminus 2^kQ_j} M_{\Phi} \left[\left(\widetilde{T}a_j \right) \chi_{8R \setminus 2Q_j} \right] (x) \, d\mu(x)
\leq \sum_{j=1}^{2} |\lambda_j| \sum_{k=2}^{N_j} \int_{2^{k+1}Q_j \setminus 2^kQ_j} M_{\Phi} \left[\left| \widetilde{T}a_j \right| \chi_{2^{k+2}Q_j \setminus 2^{k-1}Q_j} \right] (x) \, d\mu(x)
\leq \sum_{j=1}^{2} |\lambda_j| \sum_{k=2}^{N_j} \int_{2^{k+1}Q_j \setminus 2^kQ_j} M_{\Phi} \left[\left| \widetilde{T}a_j \right| \chi_{\max\{2^{k+2}Q_j, 8R\} \setminus 2^{k+2}Q_j} \right] (x) \, d\mu(x)
\leq E + F + G.
\]

Lemma 1, (1.2) and (2.1) tell us that

\[
E \leq \sum_{j=1}^{2} |\lambda_j| \sum_{k=2}^{N_j} \mu(2^{k+1}Q_j)^{1/2} \left\| M_{\Phi} \left[\left| \widetilde{T}a_j \right| \chi_{2^{k+2}Q_j \setminus 2^{k-1}Q_j} \right] \right\|_{L^2(\mu)}
\leq C \sum_{j=1}^{2} |\lambda_j| \sum_{k=2}^{N_j} \mu(2^{k+1}Q_j)^{1/2}
\times \left\{ \int_{2^{k+2}Q_j \setminus 2^{k-1}Q_j} \left| \int_{Q_j} K(y, z) a_j(z) \, d\mu(z) \right|^2 \, d\mu(y) \right\}^{1/2}
\leq C \sum_{j=1}^{2} |\lambda_j| \sum_{k=2}^{N_j} \frac{\mu(2^{k+2}Q_j)}{l(2^{k-3}Q_j)^n} \|a_j\|_{L^2(\mu)} \mu(Q_j)
\leq C \sum_{j=1}^{2} |\lambda_j|.\]
By (ii) of Definition 1, (1.2), (2.3) and (2.1), we easily see that

\[G \leq \sum_{j=1}^{2} |\lambda_j| \sum_{k=2}^{N_j} \int_{2^{k-1}Q_j}^{2^k Q_j} \sup_{\varphi \sim x} \left[\int_{2^{k-1}Q_j}^{2^k Q_j} |\mathcal{T}a_j(y)| \varphi(y) \, d\mu(y) \right] \, d\mu(x) \]
\[\leq \sum_{j=1}^{2} |\lambda_j| \sum_{k=2}^{N_j} \sum_{l=1}^{k-2} \mu(2^l+1)Q) \mu(2^{l+1}Q) \|a_j\|_{L^\infty(\mu)} \|\mu(\mu(Q_j) \]
\[\leq C \sum_{j=1}^{2} |\lambda_j| \left[K_{Q_j, R} \right]^2 \|a_j\|_{L^\infty(\mu)} \mu(\mu(Q_j) \]
\[\leq C \sum_{j=1}^{2} |\lambda_j|. \]

An argument similar to the estimate for G leads to

\[F \leq C \sum_{j=1}^{2} |\lambda_j|. \]

The estimates for E, F and G give the desired estimate for I_{13}. Combining the estimates for I_{11}, I_{12}, I_{13} and I_2 yields

\[I = \int_{4R} M_b(x, y) \, d\mu(x) \leq C \sum_{j=1}^{2} |\lambda_j| = C[b]_{H^{1, \infty}} \cdot \]

Now we turn to the estimate for II. Let \(x_R \) be the center of the cube R. Invoking that \(T^* 1 = 0 \), we obtain

\[II = \int_{R^d \setminus 4R} \sup_{\varphi \sim x} \left[\int_{R^d} \mathcal{T}b(y) [\varphi(y) - \varphi(x_R)] \, d\mu(y) \right] \, d\mu(x) \]
\[\leq \int_{R^d \setminus 4R} \sup_{\varphi \sim x} \left[\int_{2R} \mathcal{T}b(y) [\varphi(y) - \varphi(x_R)] \, d\mu(y) \right] \, d\mu(x) \]
\[+ \int_{R^d \setminus 4R} \sup_{\varphi \sim x} \left[\int_{2R} \mathcal{T}b(y) [\varphi(y) - \varphi(x_R)] \, d\mu(y) \right] \, d\mu(x) \]
\[= II_1 + II_2. \]

Note that for any \(z \in 2R, x \in 2^{k+1} R \setminus 2^k R, \) and \(k \geq 2, \) we have \(|x - z| \geq l(2k-2R) \). This together with (iii) of Definition 1 and the mean value theorem leads to

\[|\varphi(y) - \varphi(x_R)| \leq C \frac{l(R)}{l(2k-2R)^{n+1}} \]
for \(y \in 2R \). By (2.5), (1.2), the Hölder inequality, the boundedness of \(\tilde{T} \) in \(L^2(\mu) \) and (2.1), we have

\[
\Pi_1 \leq \sum_{j=1}^{2} |\lambda_j| \int_{2^{k+1}R \setminus 2^kR} \sup_{x \in \mathbb{R}^d \setminus 2R} \left| \tilde{T}a_j(y) \right| |\varphi(y) - \varphi(x_R)| \, d\mu(y) \, d\mu(x) + \sum_{j=1}^{2} |\lambda_j| \int_{2^{k+1}R \setminus 2^kR} \sup_{x \in \mathbb{R}^d \setminus 2R} \left| \tilde{T}a_j(y) \right| |\varphi(y) - \varphi(x_R)| \, d\mu(y) \, d\mu(x)
\]

\[
\leq C \sum_{j=1}^{2} |\lambda_j| \int_{2^{k+1}R \setminus 2^kR} \frac{l(R)}{l(2^{k-2}R)^{n+1}} \times \sum_{l=1}^{N_j-1} \int_{2^{l+1}Q_j \setminus 2^lQ_j} |a_j(z)| \, d\mu(z) \, d\mu(y) \, d\mu(x) + C \sum_{j=1}^{2} |\lambda_j| \int_{2^{k+1}R \setminus 2^kR} \frac{l(R)}{l(2^{k-2}R)^{n+1}} \left\| (\tilde{T}a_j) \chi_{2^kQ_j} \right\|_{L^2(\mu)} \, d\mu(x)
\]

\[
\leq C \sum_{j=1}^{2} |\lambda_j| K_{Q_j, R} \left| a_j \right|_{L^\infty(\mu)} + C \sum_{j=1}^{2} |\lambda_j| \left| a_j \right|_{L^2(\mu)}(Q_j)
\]

\[
\leq C \sum_{j=1}^{2} |\lambda_j|
\]

We further estimate \(\Pi_2 \) by

\[
\Pi_2 = \sum_{k=2}^{\infty} \int_{2^{k+1}R \setminus 2^kR} \sup_{x \in \mathbb{R}^d \setminus 2R} \left| \tilde{T}b(y) \right| |\varphi(y) - \varphi(x_R)| \, d\mu(y) \, d\mu(x)
\]

\[
\leq \sum_{k=2}^{\infty} \int_{2^{k+1}R \setminus 2^kR} M_{\Phi} \left[\tilde{T}b \right]_{2^{k+1}R \setminus 2^kR}(x) \, d\mu(x)
\]

\[
+ \sum_{k=2}^{\infty} \int_{2^{k+1}R \setminus 2^kR} \sup_{x \in \mathbb{R}^d \setminus 2R} \left| \tilde{T}b(y) \right| |\varphi(y) - \varphi(x_R)| \, d\mu(y) \, d\mu(x)
\]

\[
+ \sum_{k=2}^{\infty} \int_{2^{k+1}R \setminus 2^kR} \sup_{x \in \mathbb{R}^d \setminus 2R} \left| \tilde{T}b(y) \right| |\varphi(y) - \varphi(x_R)| \, d\mu(y) \, d\mu(x)
\]

\[
= \Pi_{21} + \Pi_{22} + \Pi_{23} + \Pi_{24}
\]
From Lemma 1, the fact that $\int_{\mathbb{R}^d} b d\mu = 0$ and (1.3), we can deduce that

$$\Pi_{21} \leq \sum_{k=2}^{\infty} \mu(2^{k+1}R)^{1/2} \left\| M_\Phi \left(\tilde{T}b \chi_{2^k+2R, 2^{k-1}R} \right) \right\|_{L^2(\mu)}$$

$$\leq C \sum_{k=2}^{\infty} \mu(2^{k+1}R)^{1/2}$$

$$\times \left\{ \int_{2^{k+2}R \setminus 2^{k-1}R} \left| \int_{\mathbb{R}^d} [K(y, z) - K(y, xR)] b(z) d\mu(z) \right|^2 d\mu(y) \right\}^{1/2}$$

$$\leq C \sum_{k=2}^{\infty} \mu(2^{k+1}R) \frac{l(R)^\delta}{l(2^kR)^{n+\delta}} \|b\|_{L^1(\mu)}$$

$$\leq C \sum_{j=1}^{2} |\lambda_j|,$$

where we have used the fact that

$$\|b\|_{L^1(\mu)} \leq \sum_{j=1}^{2} |\lambda_j| \|a_j\|_{L^1(\mu)} \leq C \sum_{j=1}^{2} |\lambda_j|.$$

An argument similar to the estimate for Π_{21} tells us that

$$\Pi_{22} \leq C \sum_{j=1}^{2} |\lambda_j|.$$

Finally, we estimate Π_{23}. By the fact that $\int_{\mathbb{R}^d} b d\mu = 0$, (ii) of Definition 1 and (1.3), we obtain

$$\Pi_{23} \leq \sum_{k=2}^{\infty} \int_{2^{k+1}R \setminus 2^kR} \int_{2^{l+1}R \setminus 2^lR} \int_{\mathbb{R}^d} [K(y, z) - K(y, xR)] b(z) d\mu(z)$$

$$\times \left[\frac{1}{|y-x|^n} + \frac{1}{|xR-x|^n} \right] d\mu(y) d\mu(x)$$

$$\leq C \sum_{k=2}^{\infty} \sum_{l=k+2}^{\infty} \mu(2^{k+1}R) \mu(2^{l+1}R) \frac{l(R)^\delta}{l(2^kR)^{n+\delta}} \|b\|_{L^1(\mu)}$$

$$\leq C \sum_{j=1}^{2} |\lambda_j|.$$

An argument similar to the estimate for Π_{23} indicates that

$$\Pi_{24} \leq C \sum_{j=1}^{2} |\lambda_j|.$$

Combining the estimates for Π_{21}, Π_{22}, Π_{23} and Π_{24}, we obtain the desired estimate for Π_2. The estimates for Π_1 and Π_2 tell us that

$$(2.6) \quad \Pi = \int_{\mathbb{R}^d \setminus 4R} M_{\Phi}(\tilde{T}b)(x) d\mu(x) \leq C|b|_{H^{1, \infty}_{\text{atb}, 2}(\mu)}.$$

The estimates (2.4) and (2.6) lead to (2.2), and this completes the proof of our theorem.
Acknowledgement

The authors would like to express their deep thanks to the referee and Professor Andreas Seeger for their several valuable remarks and suggestions which made this article more readable.

References

Institute of Applied Physics and Computational Mathematics, P.O. 8009, Beijing, 100088, People’s Republic of China
E-mail address: chenwg@mail.iapcm.ac.cn

School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, People’s Republic of China
E-mail address: mengyan@mail.bnu.edu.cn

School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, People’s Republic of China
E-mail address: dcyang@bnu.edu.cn

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use