## An approach to the regularity for stable-stationary harmonic maps

HTML articles powered by AMS MathViewer

- by Hsu Deliang
- Proc. Amer. Math. Soc.
**133**(2005), 2805-2812 - DOI: https://doi.org/10.1090/S0002-9939-05-07818-4
- Published electronically: March 22, 2005
- PDF | Request permission

## Abstract:

In this paper we investigate the regularity of stable-stationary harmonic maps. By assuming that the target manifolds do not carry any stable harmonic $S^{2}$, we obtain some compactness results and regularity theorems. In particular, we prove that the Hausdorff dimension of the singular set of these maps cannot exceed $n-3$, and the dimension estimate is optimal.## References

- William K. Allard,
*An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled*, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp. 1–28. MR**840267**, DOI 10.1090/pspum/044/840267 - Fabrice Bethuel,
*On the singular set of stationary harmonic maps*, Manuscripta Math.**78**(1993), no. 4, 417–443. MR**1208652**, DOI 10.1007/BF02599324 - Lawrence C. Evans,
*Partial regularity for stationary harmonic maps into spheres*, Arch. Rational Mech. Anal.**116**(1991), no. 2, 101–113. MR**1143435**, DOI 10.1007/BF00375587 - Mariano Giaquinta and Enrico Giusti,
*The singular set of the minima of certain quadratic functionals*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**11**(1984), no. 1, 45–55. MR**752579** - Deliang Hsu, Jiayu Li, On the regularity of stationary harmonic maps. Preprint.
- Frédéric Hélein,
*Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne*, C. R. Acad. Sci. Paris Sér. I Math.**312**(1991), no. 8, 591–596 (French, with English summary). MR**1101039** - Min-Chun Hong,
*On the Hausdorff dimension of the singular set of stable-stationary harmonic maps*, Comm. Partial Differential Equations**24**(1999), no. 11-12, 1967–1985. MR**1720786**, DOI 10.1080/03605309908821490 - Min-Chun Hong and Chang-You Wang,
*On the singular set of stable-stationary harmonic maps*, Calc. Var. Partial Differential Equations**9**(1999), no. 2, 141–156. MR**1714121**, DOI 10.1007/s005260050135 - Jiayu Li and Gang Tian,
*A blow-up formula for stationary harmonic maps*, Internat. Math. Res. Notices**14**(1998), 735–755. MR**1637101**, DOI 10.1155/S1073792898000440 - Fang-Hua Lin,
*Gradient estimates and blow-up analysis for stationary harmonic maps*, Ann. of Math. (2)**149**(1999), no. 3, 785–829. MR**1709303**, DOI 10.2307/121073 - Robert M. Hardt,
*Singularities of harmonic maps*, Bull. Amer. Math. Soc. (N.S.)**34**(1997), no. 1, 15–34. MR**1397098**, DOI 10.1090/S0273-0979-97-00692-7 - Mario J. Micallef and John Douglas Moore,
*Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes*, Ann. of Math. (2)**127**(1988), no. 1, 199–227. MR**924677**, DOI 10.2307/1971420 - Tristan Rivière,
*Everywhere discontinuous harmonic maps into spheres*, Acta Math.**175**(1995), no. 2, 197–226. MR**1368247**, DOI 10.1007/BF02393305 - J. Sacks and K. Uhlenbeck,
*The existence of minimal immersions of $2$-spheres*, Ann. of Math. (2)**113**(1981), no. 1, 1–24. MR**604040**, DOI 10.2307/1971131 - Richard Schoen and Karen Uhlenbeck,
*A regularity theory for harmonic maps*, J. Differential Geometry**17**(1982), no. 2, 307–335. MR**664498** - S. Walter Wei,
*Liouville theorems for stable harmonic maps into either strongly unstable, or $\delta$-pinched, manifolds*, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984) Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, pp. 405–412. MR**840289**, DOI 10.1090/pspum/044/840289 - S. Walter Wei and Chi-Ming Yau,
*Regularity of $p$-energy minimizing maps and $p$-superstrongly unstable indices*, J. Geom. Anal.**4**(1994), no. 2, 247–272. MR**1277509**, DOI 10.1007/BF02921550

## Bibliographic Information

**Hsu Deliang**- Affiliation: Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China
- Email: dlxu@sjtu.edu.cn
- Received by editor(s): December 15, 2003
- Received by editor(s) in revised form: May 4, 2004
- Published electronically: March 22, 2005
- Additional Notes: The author was supported in part by Chinese NSF Grant 10301020.
- Communicated by: Richard A. Wentworth
- © Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**133**(2005), 2805-2812 - MSC (2000): Primary 58E20
- DOI: https://doi.org/10.1090/S0002-9939-05-07818-4
- MathSciNet review: 2146230