On embeddings in the sphere
HTML articles powered by AMS MathViewer
- by John R. Klein
- Proc. Amer. Math. Soc. 133 (2005), 2783-2793
- DOI: https://doi.org/10.1090/S0002-9939-05-07823-8
- Published electronically: April 19, 2005
- PDF | Request permission
Abstract:
We consider embeddings of a finite complex in a sphere. We give a homotopy-theoretic classification of such embeddings in a wide range.References
- William Browder, Embedding smooth manifolds, Proc. Internat. Congr. Math. (Moscow, 1966) Izdat. “Mir”, Moscow, 1968, pp. 712–719. MR 0238335
- Francis X. Connolly and Bruce Williams, Embeddings up to homotopy type and geometric suspensions of manifolds, Quart. J. Math. Oxford Ser. (2) 29 (1978), no. 116, 385–401. MR 517733, DOI 10.1093/qmath/29.4.385
- George Cooke, Embedding certain complexes up to homotopy type in euclidean space, Ann. of Math. (2) 90 (1969), 144–156. MR 242152, DOI 10.2307/1970685
- George Cooke, Thickenings of CW complexes of the form $S^{m}\cup _{\alpha }e^{n}$, Trans. Amer. Math. Soc. 247 (1979), 177–210. MR 517691, DOI 10.1090/S0002-9947-1979-0517691-0
- Octavian Cornea, New obstructions to the thickening of CW-complexes, Proc. Amer. Math. Soc. 132 (2004), no. 9, 2769–2781. MR 2054804, DOI 10.1090/S0002-9939-04-07345-9
- André Haefliger and Morris W. Hirsch, On the existence and classification of differentiable embeddings, Topology 2 (1963), 129–135. MR 149494, DOI 10.1016/0040-9383(63)90028-4
- Nathan Habegger, Embedding up to homotopy type—the first obstruction, Topology Appl. 17 (1984), no. 2, 131–143. MR 738942, DOI 10.1016/0166-8641(84)90037-3
- Klein, J. R.: Moduli of suspension spectra. arXiv:math.AT/0210258, to appear in Trans. Amer. Math. Soc.
- John R. Klein, Poincaré duality embeddings and fiberwise homotopy theory, Topology 38 (1999), no. 3, 597–620. MR 1670412, DOI 10.1016/S0040-9383(98)00034-2
- Pascal Lambrechts, Don Stanley, and Lucile Vandembroucq, Embeddings up to homotopy of two-cones in Euclidean space, Trans. Amer. Math. Soc. 354 (2002), no. 10, 3973–4013. MR 1926862, DOI 10.1090/S0002-9947-02-03030-1
- Mark Mahowald, The metastable homotopy of $S^{n}$, Memoirs of the American Mathematical Society, No. 72, American Mathematical Society, Providence, R.I., 1967. MR 0236923
- Robert Rigdon, $p$-equivalences and embeddings of manifolds, J. London Math. Soc. (2) 2 (1975), no. 2, 233–244. MR 431211, DOI 10.1112/jlms/s2-11.2.233
- C. T. C. Wall, Classification problems in differential topology. IV. Thickenings, Topology 5 (1966), 73–94. MR 192509, DOI 10.1016/0040-9383(66)90005-X
- C. T. C. Wall, Surgery on compact manifolds, 2nd ed., Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI, 1999. Edited and with a foreword by A. A. Ranicki. MR 1687388, DOI 10.1090/surv/069
- Bruce Williams, Hopf invariants, localization and embeddings of Poincaré complexes, Pacific J. Math. 84 (1979), no. 1, 217–224. MR 559639
Bibliographic Information
- John R. Klein
- Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
- MR Author ID: 308817
- Email: klein@math.wayne.edu
- Received by editor(s): October 29, 2003
- Received by editor(s) in revised form: May 1, 2004
- Published electronically: April 19, 2005
- Additional Notes: The author was partially supported by NSF Grant DMS-0201695
- Communicated by: Paul Goerss
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 2783-2793
- MSC (2000): Primary 55P25; Secondary 57Q35
- DOI: https://doi.org/10.1090/S0002-9939-05-07823-8
- MathSciNet review: 2146234