Brangesian spaces in $H^p(\mathbf {T}^2)$
HTML articles powered by AMS MathViewer
- by D. A. Redett
- Proc. Amer. Math. Soc. 133 (2005), 2689-2695
- DOI: https://doi.org/10.1090/S0002-9939-05-07833-0
- Published electronically: March 22, 2005
- PDF | Request permission
Abstract:
In this note, we characterize certain algebraic subspaces of $H^p(\mathbf {T}^2)$ extending D. Singh’s $H^2(\mathbf {T}^2)$ result.References
- V. Mandrekar, The validity of Beurling theorems in polydiscs, Proc. Amer. Math. Soc. 103 (1988), no. 1, 145–148. MR 938659, DOI 10.1090/S0002-9939-1988-0938659-7
- D. A. Redett, “Beurling Type” Subspaces of $L^p(\mathbf {T}^2)$ and $H^p(\mathbf {T}^2)$, Proc. Amer. Math. Soc., 133 no. 4 (2005), 1151–1156.
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
- Dinesh Singh, Brangesian spaces in the polydisk, Proc. Amer. Math. Soc. 110 (1990), no. 4, 971–977. MR 1028289, DOI 10.1090/S0002-9939-1990-1028289-2
- Dinesh Singh and Sanjeev Agrawal, de Branges spaces contained in some Banach spaces of analytic functions, Illinois J. Math. 39 (1995), no. 3, 351–357. MR 1339831
- Marek Słociński, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), no. 3, 255–262. MR 587496, DOI 10.4064/ap-37-3-255-262
- Alberto Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986. MR 869816
Bibliographic Information
- D. A. Redett
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- MR Author ID: 751935
- Email: redett@math.tamu.edu
- Received by editor(s): October 28, 2003
- Received by editor(s) in revised form: April 27, 2004
- Published electronically: March 22, 2005
- Communicated by: Joseph A. Ball
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 2689-2695
- MSC (2000): Primary 47A15; Secondary 46E30
- DOI: https://doi.org/10.1090/S0002-9939-05-07833-0
- MathSciNet review: 2146215