Weierstrass functions in Zygmund’s class
HTML articles powered by AMS MathViewer
- by Yanick Heurteaux
- Proc. Amer. Math. Soc. 133 (2005), 2711-2720
- DOI: https://doi.org/10.1090/S0002-9939-05-07857-3
- Published electronically: March 22, 2005
- PDF | Request permission
Abstract:
Consider the function \[ f(x)=\sum _{n=0}^{+\infty }b^{-n}g(b^nx)\] where $b>1$ and $g$ is an almost periodic $C^{1,\varepsilon }$ function. It is well known that the function $f$ lives in the so-called Zygmund class. We prove that $f$ is generically nowhere differentiable. This is the case in particular if the elementary condition $g^\prime (0)\not = 0$ is satisfied. We also give a sufficient condition on the Fourier coefficients of $g$ which ensures that $f$ is nowhere differentiable.References
- T. Bousch and Y. Heurteaux, On oscillations of Weierstrass-type functions, manuscript, 1999.
- Thierry Bousch and Yanick Heurteaux, Caloric measure on domains bounded by Weierstrass-type graphs, Ann. Acad. Sci. Fenn. Math. 25 (2000), no. 2, 501–522. MR 1762432
- C. Corduneanu, Almost periodic functions, Interscience Tracts in Pure and Applied Mathematics, No. 22, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1968. With the collaboration of N. Gheorghiu and V. Barbu; Translated from the Romanian by Gitta Bernstein and Eugene Tomer. MR 0481915
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- G. H. Hardy, Weierstrass’s non-differentiable function, Trans. Amer. Math. Soc. 17 (1916), no. 3, 301–325. MR 1501044, DOI 10.1090/S0002-9947-1916-1501044-1
- Yanick Heurteaux, Weierstrass functions with random phases, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3065–3077. MR 1974675, DOI 10.1090/S0002-9947-03-03221-5
- Tian You Hu and Ka-Sing Lau, Fractal dimensions and singularities of the Weierstrass type functions, Trans. Amer. Math. Soc. 335 (1993), no. 2, 649–665. MR 1076614, DOI 10.1090/S0002-9947-1993-1076614-6
- James L. Kaplan, John Mallet-Paret, and James A. Yorke, The Lyapunov dimension of a nowhere differentiable attracting torus, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 261–281. MR 766105, DOI 10.1017/S0143385700002431
- Steven G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 1 (1983), no. 3, 193–260. MR 782608
- R. Daniel Mauldin and S. C. Williams, On the Hausdorff dimension of some graphs, Trans. Amer. Math. Soc. 298 (1986), no. 2, 793–803. MR 860394, DOI 10.1090/S0002-9947-1986-0860394-7
- F. Przytycki and M. Urbański, On the Hausdorff dimension of some fractal sets, Studia Math. 93 (1989), no. 2, 155–186. MR 1002918, DOI 10.4064/sm-93-2-155-186
Bibliographic Information
- Yanick Heurteaux
- Affiliation: Laboratoire de Mathématiques, UMR 6620, Université Blaise Pascal, F-63177 Aubière cedex, France
- Email: Yanick.Heurteaux@math.univ-bpclermont.fr
- Received by editor(s): April 29, 2004
- Published electronically: March 22, 2005
- Communicated by: David Preiss
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 133 (2005), 2711-2720
- MSC (2000): Primary 26A27, 28A80
- DOI: https://doi.org/10.1090/S0002-9939-05-07857-3
- MathSciNet review: 2146218