## Weierstrass functions in Zygmund’s class

HTML articles powered by AMS MathViewer

- by Yanick Heurteaux
- Proc. Amer. Math. Soc.
**133**(2005), 2711-2720 - DOI: https://doi.org/10.1090/S0002-9939-05-07857-3
- Published electronically: March 22, 2005
- PDF | Request permission

## Abstract:

Consider the function \[ f(x)=\sum _{n=0}^{+\infty }b^{-n}g(b^nx)\] where $b>1$ and $g$ is an almost periodic $C^{1,\varepsilon }$ function. It is well known that the function $f$ lives in the so-called Zygmund class. We prove that $f$ is generically nowhere differentiable. This is the case in particular if the elementary condition $g^\prime (0)\not = 0$ is satisfied. We also give a sufficient condition on the Fourier coefficients of $g$ which ensures that $f$ is nowhere differentiable.## References

- T. Bousch and Y. Heurteaux,
*On oscillations of Weierstrass-type functions*, manuscript, 1999. - Thierry Bousch and Yanick Heurteaux,
*Caloric measure on domains bounded by Weierstrass-type graphs*, Ann. Acad. Sci. Fenn. Math.**25**(2000), no. 2, 501–522. MR**1762432** - C. Corduneanu,
*Almost periodic functions*, Interscience Tracts in Pure and Applied Mathematics, No. 22, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1968. With the collaboration of N. Gheorghiu and V. Barbu; Translated from the Romanian by Gitta Bernstein and Eugene Tomer. MR**0481915** - Kenneth Falconer,
*Fractal geometry*, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR**1102677** - G. H. Hardy,
*Weierstrass’s non-differentiable function*, Trans. Amer. Math. Soc.**17**(1916), no. 3, 301–325. MR**1501044**, DOI 10.1090/S0002-9947-1916-1501044-1 - Yanick Heurteaux,
*Weierstrass functions with random phases*, Trans. Amer. Math. Soc.**355**(2003), no. 8, 3065–3077. MR**1974675**, DOI 10.1090/S0002-9947-03-03221-5 - Tian You Hu and Ka-Sing Lau,
*Fractal dimensions and singularities of the Weierstrass type functions*, Trans. Amer. Math. Soc.**335**(1993), no. 2, 649–665. MR**1076614**, DOI 10.1090/S0002-9947-1993-1076614-6 - James L. Kaplan, John Mallet-Paret, and James A. Yorke,
*The Lyapunov dimension of a nowhere differentiable attracting torus*, Ergodic Theory Dynam. Systems**4**(1984), no. 2, 261–281. MR**766105**, DOI 10.1017/S0143385700002431 - Steven G. Krantz,
*Lipschitz spaces, smoothness of functions, and approximation theory*, Exposition. Math.**1**(1983), no. 3, 193–260. MR**782608** - R. Daniel Mauldin and S. C. Williams,
*On the Hausdorff dimension of some graphs*, Trans. Amer. Math. Soc.**298**(1986), no. 2, 793–803. MR**860394**, DOI 10.1090/S0002-9947-1986-0860394-7 - F. Przytycki and M. Urbański,
*On the Hausdorff dimension of some fractal sets*, Studia Math.**93**(1989), no. 2, 155–186. MR**1002918**, DOI 10.4064/sm-93-2-155-186

## Bibliographic Information

**Yanick Heurteaux**- Affiliation: Laboratoire de Mathématiques, UMR 6620, Université Blaise Pascal, F-63177 Aubière cedex, France
- Email: Yanick.Heurteaux@math.univ-bpclermont.fr
- Received by editor(s): April 29, 2004
- Published electronically: March 22, 2005
- Communicated by: David Preiss
- © Copyright 2005 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**133**(2005), 2711-2720 - MSC (2000): Primary 26A27, 28A80
- DOI: https://doi.org/10.1090/S0002-9939-05-07857-3
- MathSciNet review: 2146218