Fragmentability of sequences of set-valued mappings with applications to variational principles
HTML articles powered by AMS MathViewer
- by Marc Lassonde and Julian P. Revalski
- Proc. Amer. Math. Soc. 133 (2005), 2637-2646
- DOI: https://doi.org/10.1090/S0002-9939-05-07865-2
- Published electronically: March 15, 2005
- PDF | Request permission
Abstract:
We propose to study fragmentability of set-valued mappings not only for a given single mapping, but also for a sequence of mappings associated with the initial one. It turns out that this property underlies several variational principles, such as for example the Deville-Godefroy-Zizler variational principle and the Stegall variational principle, by providing a common path for proof.References
- J. M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc. 303 (1987), no. 2, 517–527. MR 902782, DOI 10.1090/S0002-9947-1987-0902782-7
- Jonathan Borwein, Lixin Cheng, Marián Fabian, and Julian P. Revalski, A one perturbation variational principle and applications, Set-Valued Anal. 12 (2004), no. 1-2, 49–60. MR 2069351, DOI 10.1023/B:SVAN.0000023400.92518.cb
- Jens Peter Reus Christensen and Petar Stojanov Kenderov, Dense strong continuity of mappings and the Radon-Nikodým property, Math. Scand. 54 (1984), no. 1, 70–78. MR 753064, DOI 10.7146/math.scand.a-12041
- M. M. Čoban and P. S. Kenderov, Dense Gâteaux differentiability of the sup-norm in $C(T)$ and the topological properties of $T$, C. R. Acad. Bulgare Sci. 38 (1985), no. 12, 1603–1604. MR 837262
- M. M. Čoban, P. S. Kenderov, and J. P. Revalski, Generic well-posedness of optimization problems in topological spaces, Mathematika 36 (1989), no. 2, 301–324 (1990). MR 1045790, DOI 10.1112/S0025579300013152
- M. M. Čoban, P. S. Kenderov, and J. P. Revalski, Densely defined selections of multivalued mappings, Trans. Amer. Math. Soc. 344 (1994), no. 2, 533–552. MR 1154539, DOI 10.1090/S0002-9947-1994-1154539-6
- M. M. Čoban, P. S. Kenderov, and J. P. Revalski, Topological spaces related to the Banach-Mazur game and the generic well-posedness of optimization problems, Set-Valued Anal. 3 (1995), no. 3, 263–279. MR 1353413, DOI 10.1007/BF01025923
- Robert Deville, Gilles Godefroy, and Václav Zizler, A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal. 111 (1993), no. 1, 197–212. MR 1200641, DOI 10.1006/jfan.1993.1009
- Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634
- Robert Deville and Julian P. Revalski, Porosity of ill-posed problems, Proc. Amer. Math. Soc. 128 (2000), no. 4, 1117–1124. MR 1636942, DOI 10.1090/S0002-9939-99-05091-1
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. MR 346619, DOI 10.1016/0022-247X(74)90025-0
- Ivar Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 443–474. MR 526967, DOI 10.1090/S0273-0979-1979-14595-6
- R. W. Hansell, J. E. Jayne, and M. Talagrand, First class selectors for weakly upper semicontinuous multivalued maps in Banach spaces, J. Reine Angew. Math. 361 (1985), 201–220. MR 807260
- A. D. Ioffe, R. E. Lucchetti, and J. P. Revalski, A variational principle for problems with functional constraints, SIAM J. Optim. 12 (2001/02), no. 2, 461–478. MR 1885571, DOI 10.1137/S1052623400378274
- Alexander D. Ioffe and Alexander J. Zaslavski, Variational principles and well-posedness in optimization and calculus of variations, SIAM J. Control Optim. 38 (2000), no. 2, 566–581. MR 1741153, DOI 10.1137/S0363012998335632
- J. E. Jayne, I. Namioka, and C. A. Rogers, Topological properties of Banach spaces, Proc. London Math. Soc. (3) 66 (1993), no. 3, 651–672. MR 1207552, DOI 10.1112/plms/s3-66.3.651
- J. E. Jayne and C. A. Rogers, Borel selectors for upper semicontinuous set-valued maps, Acta Math. 155 (1985), no. 1-2, 41–79. MR 793237, DOI 10.1007/BF02392537
- Petar S. Kenderov and Warren B. Moors, Fragmentability and sigma-fragmentability of Banach spaces, J. London Math. Soc. (2) 60 (1999), no. 1, 203–223. MR 1721825, DOI 10.1112/S002461079900753X
- P. S. Kenderov and J. P. Revalski, The Banach-Mazur game and generic existence of solutions to optimization problems, Proc. Amer. Math. Soc. 118 (1993), no. 3, 911–917. MR 1137224, DOI 10.1090/S0002-9939-1993-1137224-0
- Philip D. Loewen and Xianfu Wang, A generalized variational principle, Canad. J. Math. 53 (2001), no. 6, 1174–1193. MR 1863847, DOI 10.4153/CJM-2001-044-8
- Robert R. Phelps, Convex functions, monotone operators and differentiability, 2nd ed., Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1993. MR 1238715
- N. K. Ribarska, Internal characterization of fragmentable spaces, Mathematika 34 (1987), no. 2, 243–257. MR 933503, DOI 10.1112/S0025579300013498
- N. K. Ribarska, The dual of a Gâteaux smooth Banach space is weak star fragmentable, Proc. Amer. Math. Soc. 114 (1992), no. 4, 1003–1008. MR 1101992, DOI 10.1090/S0002-9939-1992-1101992-3
- Charles Stegall, Optimization of functions on certain subsets of Banach spaces, Math. Ann. 236 (1978), no. 2, 171–176. MR 503448, DOI 10.1007/BF01351389
Bibliographic Information
- Marc Lassonde
- Affiliation: Laboratoire AOC, Département de Mathématiques, Université des Antilles et de la Guyane, 97159 Pointe-à-Pitre, France
- Email: marc.lassonde@univ-ag.fr
- Julian P. Revalski
- Affiliation: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 8, 1113 Sofia, Bulgaria
- MR Author ID: 147355
- Email: revalski@math.bas.bg
- Received by editor(s): April 20, 2004
- Published electronically: March 15, 2005
- Additional Notes: The second author’s research was supported by a Marie Curie Fellowship of the European Community program IHP under contract HPMF-CT-2002-01874
- Communicated by: Jonathan M. Borwein
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 2637-2646
- MSC (2000): Primary 49J53; Secondary 46B20, 46B22, 54C60
- DOI: https://doi.org/10.1090/S0002-9939-05-07865-2
- MathSciNet review: 2146209