The classical monotone convergence theorem of Beppo Levi fails in noncommutative $L_2$-spaces
HTML articles powered by AMS MathViewer
- by Barthélemy Le Gac and Ferenc Móricz
- Proc. Amer. Math. Soc. 133 (2005), 2559-2567
- DOI: https://doi.org/10.1090/S0002-9939-05-07976-1
- Published electronically: April 8, 2005
- PDF | Request permission
Abstract:
Let $H$ be a complex Hilbert space and let $\mathfrak {A}$ be a von Neumann algebra over $H$ equipped with a faithful, normal state $\phi$. Then $\mathfrak {A}$ is a prehilbert space with respect to the inner product $\langle A\mid B\rangle := \phi (B^* A)$, whose completion $L_2 = L_2 (\mathfrak {A} ,\phi )$ is given by the Gelfand–Naimark–Segal representation theorem, according to which there exist a one-to-one $*$-homomorphism $\pi$ of $\mathfrak {A}$ into the algebra $\mathcal {L} (L_2)$ of all bounded linear operators acting on $L_2$ and a cyclic, separating vector $\omega \in L_2$ such that $\phi (A) = (\pi (A) \omega \mid \omega )$ for all $A\in \mathfrak {A}$. Given any separable Hilbert space $H$, we construct a faithful, normal state $\phi$ on $\mathcal {L} (H)$ and an increasing sequence $(A_n : n\ge 1)$ of positive operators acting on $H$ such that $(\phi (A^2_n) : n\ge 1)$ is bounded, but $(\pi (A_n) \omega : n\ge 1)$ fails to converge both bundlewise and in $L_2$-norm. We also present an example of an increasing sequence of positive operators which has a subsequence converging both bundlewise and in $L_2$-norm, but the whole sequence fails to converge in either sense. Finally, we observe that our results are linked to a previous one by R. V. Kadison.References
- Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition, revue et augmentée. MR 0352996
- Ewa Hensz, Ryszard Jajte, and Adam Paszkiewicz, The bundle convergence in von Neumann algebras and their $L_2$-spaces, Studia Math. 120 (1996), no. 1, 23–46. MR 1398171, DOI 10.4064/sm-120-1-23-46
- Ryszard Jajte, Strong limit theorems in noncommutative probability, Lecture Notes in Mathematics, vol. 1110, Springer-Verlag, Berlin, 1985. MR 778724, DOI 10.1007/BFb0101453
- Ryszard Jajte, Strong limit theorems in noncommutative $L_2$-spaces, Lecture Notes in Mathematics, vol. 1477, Springer-Verlag, Berlin, 1991. MR 1122589, DOI 10.1007/BFb0098424
- Richard V. Kadison, Some notes on noncommutative analysis, Analysis at Urbana, Vol. II (Urbana, IL, 1986–1987) London Math. Soc. Lecture Note Ser., vol. 138, Cambridge Univ. Press, Cambridge, 1989, pp. 243–257. MR 1009193, DOI 10.1080/02698598808573318
- Barthélemy Le Gac and Ferenc Móricz, Beppo Levi and Lebesgue type theorems for bundle convergence in noncommutative $L_2$-spaces, Recent advances in operator theory and related topics (Szeged, 1999) Oper. Theory Adv. Appl., vol. 127, Birkhäuser, Basel, 2001, pp. 447–464. MR 1902816
- Barthélemy Le Gac and Ferenc Móricz, Bundle convergence of weighted sums of operators in noncommutative $L_2$-spaces, Bull. Polish Acad. Sci. Math. 49 (2001), no. 4, 327–336. MR 1872666
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
Bibliographic Information
- Barthélemy Le Gac
- Affiliation: Université de Provence, Centre de Mathématiques et Informatique, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France
- Email: legac@cmi.univ-mrs.fr
- Ferenc Móricz
- Affiliation: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary
- Email: moricz@math.u-szeged.hu
- Received by editor(s): September 2, 2002
- Published electronically: April 8, 2005
- Additional Notes: This research was started while the second-named author visited the “Centre de Mathématiques et Informatique, Université de Provence, Marseille” during the summer of 2002; it was also partially supported by the Hungarian National Foundation for Scientific Research under Grants T 044782 and T 046192.
- Communicated by: Jonathan M. Borwein
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 2559-2567
- MSC (2000): Primary 46L53, 46L10
- DOI: https://doi.org/10.1090/S0002-9939-05-07976-1
- MathSciNet review: 2146199