## The classical monotone convergence theorem of Beppo Levi fails in noncommutative $L_2$-spaces

HTML articles powered by AMS MathViewer

- by Barthélemy Le Gac and Ferenc Móricz PDF
- Proc. Amer. Math. Soc.
**133**(2005), 2559-2567 Request permission

## Abstract:

Let $H$ be a complex Hilbert space and let $\mathfrak {A}$ be a von Neumann algebra over $H$ equipped with a faithful, normal state $\phi$. Then $\mathfrak {A}$ is a prehilbert space with respect to the inner product $\langle A\mid B\rangle := \phi (B^* A)$, whose completion $L_2 = L_2 (\mathfrak {A} ,\phi )$ is given by the Gelfand–Naimark–Segal representation theorem, according to which there exist a one-to-one $*$-homomorphism $\pi$ of $\mathfrak {A}$ into the algebra $\mathcal {L} (L_2)$ of all bounded linear operators acting on $L_2$ and a cyclic, separating vector $\omega \in L_2$ such that $\phi (A) = (\pi (A) \omega \mid \omega )$ for all $A\in \mathfrak {A}$. Given any separable Hilbert space $H$, we construct a faithful, normal state $\phi$ on $\mathcal {L} (H)$ and an increasing sequence $(A_n : n\ge 1)$ of positive operators acting on $H$ such that $(\phi (A^2_n) : n\ge 1)$ is bounded, but $(\pi (A_n) \omega : n\ge 1)$ fails to converge both bundlewise and in $L_2$-norm. We also present an example of an increasing sequence of positive operators which has a subsequence converging both bundlewise and in $L_2$-norm, but the whole sequence fails to converge in either sense. Finally, we observe that our results are linked to a previous one by R. V. Kadison.## References

- Jacques Dixmier,
*Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann)*, Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition, revue et augmentée. MR**0352996** - Ewa Hensz, Ryszard Jajte, and Adam Paszkiewicz,
*The bundle convergence in von Neumann algebras and their $L_2$-spaces*, Studia Math.**120**(1996), no. 1, 23–46. MR**1398171**, DOI 10.4064/sm-120-1-23-46 - Ryszard Jajte,
*Strong limit theorems in noncommutative probability*, Lecture Notes in Mathematics, vol. 1110, Springer-Verlag, Berlin, 1985. MR**778724**, DOI 10.1007/BFb0101453 - Ryszard Jajte,
*Strong limit theorems in noncommutative $L_2$-spaces*, Lecture Notes in Mathematics, vol. 1477, Springer-Verlag, Berlin, 1991. MR**1122589**, DOI 10.1007/BFb0098424 - Richard V. Kadison,
*Some notes on noncommutative analysis*, Analysis at Urbana, Vol. II (Urbana, IL, 1986–1987) London Math. Soc. Lecture Note Ser., vol. 138, Cambridge Univ. Press, Cambridge, 1989, pp. 243–257. MR**1009193**, DOI 10.1080/02698598808573318 - Barthélemy Le Gac and Ferenc Móricz,
*Beppo Levi and Lebesgue type theorems for bundle convergence in noncommutative $L_2$-spaces*, Recent advances in operator theory and related topics (Szeged, 1999) Oper. Theory Adv. Appl., vol. 127, Birkhäuser, Basel, 2001, pp. 447–464. MR**1902816** - Barthélemy Le Gac and Ferenc Móricz,
*Bundle convergence of weighted sums of operators in noncommutative $L_2$-spaces*, Bull. Polish Acad. Sci. Math.**49**(2001), no. 4, 327–336. MR**1872666** - Masamichi Takesaki,
*Theory of operator algebras. I*, Springer-Verlag, New York-Heidelberg, 1979. MR**548728**

## Additional Information

**Barthélemy Le Gac**- Affiliation: Université de Provence, Centre de Mathématiques et Informatique, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France
- Email: legac@cmi.univ-mrs.fr
**Ferenc Móricz**- Affiliation: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary
- Email: moricz@math.u-szeged.hu
- Received by editor(s): September 2, 2002
- Published electronically: April 8, 2005
- Additional Notes: This research was started while the second-named author visited the “Centre de Mathématiques et Informatique, Université de Provence, Marseille” during the summer of 2002; it was also partially supported by the Hungarian National Foundation for Scientific Research under Grants T 044782 and T 046192.
- Communicated by: Jonathan M. Borwein
- © Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**133**(2005), 2559-2567 - MSC (2000): Primary 46L53, 46L10
- DOI: https://doi.org/10.1090/S0002-9939-05-07976-1
- MathSciNet review: 2146199