Uniformly bounded limit of fractional homomorphisms
HTML articles powered by AMS MathViewer
- by Pedro J. Miana
- Proc. Amer. Math. Soc. 133 (2005), 2569-2575
- DOI: https://doi.org/10.1090/S0002-9939-05-07978-5
- Published electronically: March 31, 2005
- PDF | Request permission
Abstract:
We show that a bounded homomorphism $T: L^1_{\omega }(\mathbb {R}^+)\to {\mathcal A}$ is equivalent to a uniformly bounded family of fractional homomorphisms $T_{\alpha }: AC^{(\alpha )}_{\omega }(\mathbb {R}^+)\to {\mathcal A}$ for any $\alpha >0$. We add this characterization to the Widder-Arendt-Kisyński theorem and relate it to $\alpha$-times integrated semigroups.References
- Wolfgang Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), no. 3, 327–352. MR 920499, DOI 10.1007/BF02774144
- Adam Bobrowski, On the Yosida approximation and the Widder-Arendt representation theorem, Studia Math. 124 (1997), no. 3, 281–290. MR 1456426, DOI 10.4064/sm-124-3-281-290
- Wojciech Chojnacki, On the equivalence of a theorem of Kisyński and the Hille-Yosida generation theorem, Proc. Amer. Math. Soc. 126 (1998), no. 2, 491–497. MR 1415577, DOI 10.1090/S0002-9939-98-04048-9
- Wojciech Chojnacki, Multiplier algebras, Banach bundles, and one-parameter semigroups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 2, 287–322. MR 1736230
- Wojciech Chojnacki, A generalization of the Widder-Arendt theorem, Proc. Edinb. Math. Soc. (2) 45 (2002), no. 1, 161–179. MR 1884610, DOI 10.1017/S0013091599000814
- Brigitta Hennig and Frank Neubrander, On representations, inversions, and approximations of Laplace transforms in Banach spaces, Appl. Anal. 49 (1993), no. 3-4, 151–170. MR 1289741, DOI 10.1080/00036819108840171
- Matthias Hieber, Laplace transforms and $\alpha$-times integrated semigroups, Forum Math. 3 (1991), no. 6, 595–612. MR 1130001, DOI 10.1515/form.1991.3.595
- J. Kisyński, The Widder Spaces, Representations of the Convolution Algebra $L^1({\mathbb R}^+)$ and one Parameter Semigroups of Operators, Preprint no. 558, Institute of Mathematics, Polish Academy of Sciences, Warsaw, June 1998.
- Jan Kisyński, Around Widder’s characterization of the Laplace transform of an element of $L^\infty (\Bbb R^+)$, Ann. Polon. Math. 74 (2000), 161–200. Dedicated to the memory of Bogdan Ziemian. MR 1808994, DOI 10.4064/ap-74-1-161-200
- Pedro J. Miana, $\alpha$-times integrated semigroups and fractional derivation, Forum Math. 14 (2002), no. 1, 23–46. MR 1880193, DOI 10.1515/form.2002.004
- Kenneth S. Miller and Bertram Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993. MR 1219954
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
Bibliographic Information
- Pedro J. Miana
- Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- MR Author ID: 672733
- Email: pjmiana@unizar.es
- Received by editor(s): February 1, 2003
- Published electronically: March 31, 2005
- Additional Notes: This work was supported by a grant from Programa Europa, CAI, 2002. This paper was made during a visit to the Charles University in Prague. The author thanks Dr. Eva Fasangova and the Analysis Mathematical Department for the stay in Prague.
- Communicated by: Jonathan M. Borwein
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 2569-2575
- MSC (2000): Primary 47D62; Secondary 26A33, 46J25
- DOI: https://doi.org/10.1090/S0002-9939-05-07978-5
- MathSciNet review: 2146200