Fenchel duality, Fitzpatrick functions and the Kirszbraun–Valentine extension theorem
HTML articles powered by AMS MathViewer
- by Simeon Reich and Stephen Simons PDF
- Proc. Amer. Math. Soc. 133 (2005), 2657-2660 Request permission
Abstract:
We present a new proof of the classical Kirszbraun–Valentine extension theorem. Our proof is based on the Fenchel duality theorem from convex analysis and an analog for nonexpansive mappings of the Fitzpatrick function from monotone operator theory.References
- Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673, DOI 10.1090/coll/048
- Haïm Brezis and Alain Haraux, Image d’une somme d’opérateurs monotones et applications, Israel J. Math. 23 (1976), no. 2, 165–186. MR 399965, DOI 10.1007/BF02756796
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Simon Fitzpatrick, Representing monotone operators by convex functions, Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 20, Austral. Nat. Univ., Canberra, 1988, pp. 59–65. MR 1009594
- M. D. Kirszbraun, Über die zusammenziehende und Lipschitzsche Transformationen, Fund. Math. 22 (1934), 77–108.
- Earl J. Mickle, On the extension of a transformation, Bull. Amer. Math. Soc. 55 (1949), 160–164. MR 29974, DOI 10.1090/S0002-9904-1949-09189-9
- Simeon Reich, Extension problems for accretive sets in Banach spaces, J. Functional Analysis 26 (1977), no. 4, 378–395. MR 0477893, DOI 10.1016/0022-1236(77)90022-2
- Simeon Reich, The range of sums of accretive and monotone operators, J. Math. Anal. Appl. 68 (1979), no. 1, 310–317. MR 531440, DOI 10.1016/0022-247X(79)90117-3
- R. T. Rockafellar, Extension of Fenchel’s duality theorem for convex functions, Duke Math. J. 33 (1966), 81–89. MR 187062
- I. J. Schoenberg, On a theorem of Kirzbraun and Valentine, Amer. Math. Monthly 60 (1953), 620–622. MR 58232, DOI 10.2307/2307864
- S. Simons and C. Zălinescu, Fenchel duality, Fitzpatrick functions and maximal monotonicity, J. Nonlinear Convex Anal., in press.
- F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83–93. MR 11702, DOI 10.2307/2371917
- J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84, Springer-Verlag, New York-Heidelberg, 1975. MR 0461107
Additional Information
- Simeon Reich
- Affiliation: Department of Mathematics, The Technion - Israel Institute of Technology, 32000 Haifa, Israel
- MR Author ID: 189912
- Email: sreich@tx.technion.ac.il
- Stephen Simons
- Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106-3080
- MR Author ID: 189831
- Email: simons@math.ucsb.edu
- Received by editor(s): April 21, 2004
- Published electronically: March 22, 2005
- Communicated by: Jonathan M. Borwein
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 133 (2005), 2657-2660
- MSC (2000): Primary 46C05, 47H09; Secondary 46N10
- DOI: https://doi.org/10.1090/S0002-9939-05-07983-9
- MathSciNet review: 2146211