FENCHEL DUALITY, FITZPATRICK FUNCTIONS
AND THE KIRSZBRAUN–VALENTINE EXTENSION THEOREM

SIMEON REICH AND STEPHEN SIMONS

(Communicated by Jonathan M. Borwein)

Abstract. We present a new proof of the classical Kirszbraun–Valentine extension theorem. Our proof is based on the Fenchel duality theorem from convex analysis and an analog for nonexpansive mappings of the Fitzpatrick function from monotone operator theory.

Let \(H \) be a real Hilbert space, let \(D \) be a nonempty subset of \(H \) and let \(T : D \mapsto H \) be nonexpansive. According to the Kirszbraun–Valentine extension theorem (\([5, 12] \)), there is a nonexpansive extension of \(T \) to the whole of \(H \). Proofs of this classical result, as well as related information, can be found in, for instance, \([6, 10, 3, 13] \) and \([1] \). The purpose of this note is to present a new proof of the Kirszbraun–Valentine extension theorem, which we state as Theorem 5 below. Our proof is based on the Fenchel duality theorem from convex analysis (see Theorem 1 below) and an analog for nonexpansive maps of the Fitzpatrick function from monotone multifunction theory (see \([4] \) or \([11] \) — in the context of monotone multifunctions, related functions appear in \([2] \) and \([8] \)). We start off by stating Rockafellar’s version of the Fenchel duality theorem (see \([9, \text{Theorem 1, pp. 82–83}] \)). We recall that if \(f : E \mapsto (\mathbb{R}, \mathbb{R}] \) is convex, then the Fenchel conjugate, \(f^* \), of \(f \) is the function on the dual, \(E^* \), of \(E \) defined by \(f^*(x^*) = \sup_{x \in E} [x^* - f(x)] \).

Theorem 1. Let \(E \) be a nonzero normed space, let \(f, g : E \mapsto (\mathbb{R}, \mathbb{R}] \) be proper and convex, let \(g \) be finite and continuous at a point where \(f \) is finite, and let \(f + g \geq 0 \) on \(E \). Then there exists \(x^* \in E^* \) such that \(f^*(x^*) + g^*(-x^*) \leq 0 \).

Definition 2. Let \(D \) be a nonempty subset of a Hilbert space \(H \) and let \(T : D \mapsto H \). The map \(T \) is said to be nonexpansive if \(x, y \in D \implies \|T(x) - T(y)\| \leq \|x - y\| \). We say that \(T \) is maximally nonexpansive if \(T \) is nonexpansive, and there is no nonexpansive extension of \(T \) to a proper superset of \(D \).

Lemma 3. Let \(T : D \mapsto H \) be maximally nonexpansive, and define \(\chi : H \times H \mapsto (\mathbb{R}, \mathbb{R}] \) by

\[
\chi(p, q) := \sup_{d \in D} \left[\|q - T(d)\|^2 - \|p - d\|^2 \right].
\]

Let \(G(T) \) be the graph of \(T \), \(\{(p, T(p)) : p \in D\} \). Then:
(a) \(\chi \geq 0 \) on \(H \times H \).
(b) \(\chi(p, q) = 0 \iff (p, q) \in G(T) \).
Proof. (a) If \((p, q) \in (H \setminus D) \times H\), then we can extend \(T\) to a function \(\tilde{T}\) on \(D \cup \{p\}\) by defining \(\tilde{T}(p) = q\). Since \(T\) is maximally nonexpansive, \(\tilde{T}\) is not nonexpansive on \(D \cup \{p\}\), from which it easily follows that there exists \(d \in D\) such that \(\|\tilde{T}(p) - \tilde{T}(d)\| > \|p - d\|\), that is to say, \(\|q - T(d)\| > \|p - d\|\). Consequently, \(\chi(p, q) > 0\).

(b) If \((p, q) \in D \times H\), then \(\chi(p, q) \ge \|q - T(p)\|^2 - \|p - p\|^2 = \|q - T(p)\|^2 \ge 0\). This completes the proof of (a).

(\(D\)) \(\|p - q\| = \|p - d\| + \|d - q\| > \|p - d\|\), then \(\chi(p, q) \ge \|q - T(p)\|^2 - \|p - p\|^2 = \|q - T(p)\|^2 \ge 0\). This completes the proof of (a).

(\(T\)) \(\|q - T(d)\|^2 - \|p - d\|^2 = \|T(p) - T(d)\|^2 - \|p - d\|^2 \le 0\), while \(\|q - T(p)\|^2 - \|p - p\|^2 = 0 - 0 = 0\), which shows that \(\chi(p, q) = 0\). Conversely, if \(\chi(p, q) = 0\), then the proof of (a) shows first that \((p, q) \not\in (H \setminus D) \times H\), from which \((p, q) \in D \times H\), and then that \(\|q - T(p)\|^2 = 0\), from which \(p, q) \in G(T)\), completing the proof of (b).

Lemma 4. Let \(T\): \(D \rightarrow H\) be maximally nonexpansive and define \(\varphi\): \(H \times H \rightarrow (-\infty, \infty)\) by

\[
\varphi(x, x^*) := \frac{1}{2} \chi(x + x^*, x - x^*) + \langle x, x^* \rangle.
\]

Define the norm of \(H \times H\) by \(\|\langle x, x^* \rangle\| := \sqrt{\|x\|^2 + \|x^*\|^2}\). Then:

(a) For all \((x, x^*) \in H \times H\),

\[
\varphi(x, x^*) = \frac{1}{2} \sup_{d \in D} \left[2\|x - T(d)\|^2 + 2\langle x^*, d + T(d) \rangle + \|T(d)\|^2 - \|d\|^2 \right].
\]

(b) For all \(d \in D\), \(\varphi(\frac{1}{2}(d + T(d)), \frac{1}{2}(d - T(d))) = \frac{1}{4} \|d\|^2 - \frac{1}{4} \|T(d)\|^2\).

(c) \(\varphi\) is proper, convex and lower semicontinuous.

(d) For all \((z^*, z) \in H \times H\), \(\varphi^*(z^*, z) \ge \varphi(z, z^*)\).

(e) \(D \supseteq 0\).

(f) \(D = H\).

Proof. (a) This follows from the observation that, for all \((x, x^*) \in H \times H\) and \(d \in D\),

\[
\|x - x^* - T(d)\|^2 - \|x + x^* - d\|^2
= \|x - x^*\|^2 - 2 \langle x - x^*, T(d) \rangle + \|T(d)\|^2 - \|x + x^*\|^2 + 2\langle x + x^*, d - T(d) \rangle
= -4\langle x, x^* \rangle + 2\langle x, d - T(d) \rangle + 2\langle x^*, d + T(d) \rangle + \|T(d)\|^2 - \|d\|^2.
\]

(b) This follows since, for all \(d \in D\), Lemma 3(b) gives

\[
\varphi(\frac{1}{2}(d + T(d)), \frac{1}{2}(d - T(d))) = \frac{1}{4} \chi(d, T(d)) + \frac{1}{4} \langle d + T(d), d - T(d) \rangle
= \frac{1}{4} \|d + T(d)\|^2 - \frac{1}{4} \|d - T(d)\|^2.
\]

(c) This is immediate from (a) and (b).

(d) We have from (b) that

\[
\varphi^*(z^*, z) := \sup_{(x, x^*) \in H \times H} [(x, z^*) + \langle x^*, z \rangle - \varphi(x, x^*)]
\]

\[\ge \sup_{d \in D} \left[\frac{1}{2} \langle d + T(d), z^* \rangle + \frac{1}{2} \langle d - T(d), z \rangle - \varphi(\frac{1}{2}(d + T(d)), \frac{1}{2}(d - T(d))) \right] \]

\[= \sup_{d \in D} \left[\frac{1}{2} \langle d + T(d), z^* \rangle + \frac{1}{2} \langle d - T(d), z \rangle - \frac{1}{4} \|d\|^2 - \frac{1}{4} \|T(d)\|^2 \right] \]

\[= \frac{1}{2} \sup_{d \in D} \left[2\langle d + T(d), z^* \rangle + 2\langle d - T(d), z \rangle - \|d\|^2 + \|T(d)\|^2 \right],
\]

and the result now follows from (a).
(e) For all \((x, x^*) \in H \times H\),
\[
\varphi(x, x^*) + \frac{1}{2} \|(x, x^*)\|^2 = \frac{1}{4} \chi(x + x^*, x - x^*) + \langle x, x^* \rangle + \frac{1}{2} \|(x, x^*)\|^2.
\]
Thus, from Lemma 3(a),
\[
\begin{aligned}
\varphi(x, x^*) + \frac{1}{2} \|(x, x^*)\|^2 &\geq \langle x, x^* \rangle + \frac{1}{2} \|(x, x^*)\|^2 \\
&\geq \frac{1}{2} \|x\|^2 + \frac{1}{2} \|x^*\|^2 - \|x\|\|x^*\| \geq 0.
\end{aligned}
\quad (4.1)
\]
Part (c) and Theorem 1 now give us an element \((z^*, z)\) of \((H \times H)^* = H \times H\) such that \(\varphi^*(z^*, z) + \frac{1}{2} \|(-z^*, -z)\|^2 \leq 0\). Part (d) and (4.1) imply, in turn, that \(\varphi(z, z^*) + \frac{1}{2} \|(z, z^*)\|^2 = 0\), that is to say,
\[
\frac{1}{4} \chi(z + z^*, z - z^*) + \langle z, z^* \rangle + \frac{1}{2} \|(z, z^*)\|^2 = 0,
\]
which can be rewritten as
\[
\frac{1}{4} \chi(z + z^*, z - z^*) + \frac{1}{2} \|z + z^*\|^2 = 0.
\]
It is clear from Lemma 3(a) that \(\|z + z^*\|^2 = 0\), that is to say \(z + z^* = 0\), and then \(\chi(0, z - z^*) = 0\). Lemma 3(b) now gives \((0, z - z^*) \in G(T)\), from which (e) follows.
(f) This is immediate from (e) and a simple translation argument. \(\square\)

Theorem 5. Let \(T : D \mapsto H\) be nonexpansive. Then there is a nonexpansive extension of \(T\) to \(H\).

Proof. Zorn’s lemma easily gives that there is a maximal nonexpansive extension of \(T\). The result now follows from Lemma 4(f). \(\square\)

Remark 6. We note the fact that we have actually proved in Lemma 4(e) that
\[
\min_{(x, x^*) \in H \times H} \left[\varphi(x, x^*) + \frac{1}{2} \|(x, x^*)\|^2 \right] = 0.
\]

Remark 7. The proof of Theorem 1 uses the Eidelheit separation theorem in \(E \times \mathbb{R}\). It would be interesting to find a more direct proof for the special case we need for Lemma 4(e). This can be stated without conjugate functions in the following way: if \(f : H \mapsto (-\infty, \infty)\) is convex and, for all \(x \in H\), \(f(x) + \frac{1}{2} \|x\|^2 \geq 0\), then there exists \(y \in H\) such that, for all \(x \in H\), \(f(x) \geq \langle x, y \rangle + \frac{1}{2} \|y\|^2\).

Remark 8. We note that, in contrast with other proofs, the proof of Theorem 5 given here does not use any compactness arguments. We also remark that it was observed in [7] that Theorem 5 is equivalent to Minty’s theorem on maximal monotone multifunctions.

Remark 9. We show in this remark how Theorem 5 can be bootstrapped to give a similar result for maps from one Hilbert space into another. Let \(H_1\) and \(H_2\) be Hilbert spaces, \(0 \neq D_1 \subset H_1\) and \(U : D_1 \mapsto H_2\) be nonexpansive. Define \(T : D_1 \times H_2 \mapsto H_1 \times H_2\) by \(T(x_1, x_2) := (0, U(x_1))\). Then \(T\) is nonexpansive. Theorem 5 gives a nonexpansive \(T : H_1 \times H_2 \mapsto H_1 \times H_2\) such that \(T|_{D_1 \times H_2} = T\). If \(\text{pr}_2\) is the projection from \(H_1 \times H_2\) onto \(H_2\), then the map \(\tilde{T} : H_1 \mapsto H_2\) defined by \(\tilde{T}(x_1) := \text{pr}_2 T(x_1, 0)\) is a nonexpansive extension of \(U\).
Remark 10. If T is maximally nonexpansive, then the operator S defined by

$$G(S) := \left\{ \left(\frac{p-q}{2}, \frac{p+q}{2} \right) : (p, q) \in G(T) \right\}$$

is maximal monotone. The Fitzpatrick function of S, φ_S, is then given by the formula

$$\varphi_S(x, x^*) := \sup_{(s, s^*) \in G(S)} \left[\langle x, s^* \rangle + \langle s, x^* \rangle - \langle s, s^* \rangle \right].$$

This turns out to be identical with $\varphi(x, x^*)$ as defined in Lemma 4.

REFERENCES

Department of Mathematics, The Technion - Israel Institute of Technology, 32000 Haifa, Israel

E-mail address: sreich@tx.technion.ac.il

Department of Mathematics, University of California, Santa Barbara, California 93106-3080

E-mail address: simons@math.ucsb.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use